DOI QR코드

DOI QR Code

Characterization of Multifunctional Bacillus sp. GH1-13

복합기능성 Bacillus sp. GH1-13 균주의 특징

  • Kim, Sang Yoon (Agricultural Microbiology Division, National institute of Agricultural Sciences, RDA) ;
  • Sang, Mee Kyung (Agricultural Microbiology Division, National institute of Agricultural Sciences, RDA) ;
  • Weon, Hang-Yeon (Agricultural Microbiology Division, National institute of Agricultural Sciences, RDA) ;
  • Jeon, Young-Ah (RDA-Genebank Information Center, National institute of Agricultural Sciences, RDA) ;
  • Ryoo, Jae Hwan (Research Center for Agro-Bio EM & Environmental Resources, Jeonju University) ;
  • Song, Jaekyeong (Agricultural Microbiology Division, National institute of Agricultural Sciences, RDA)
  • 김상윤 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 상미경 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 원항연 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 전영아 (농촌진흥청 국립농업과학원 농업유전자원센터) ;
  • 류재환 (전주대학교 농생명EM환경연구센터) ;
  • 송재경 (농촌진흥청 국립농업과학원 농업미생물과)
  • Received : 2016.07.26
  • Accepted : 2016.09.11
  • Published : 2016.09.30

Abstract

Several microorganisms in particular Bacillus subtilis group have been isolated from diverse places such as soils and the gastrointestinal tract of ruminants etc., and used as biocontrol agent against various plant pathogens and utilized as plant growth promoting agents. Among them, Bacillus is well known as one of the most useful bacteria for biocontrol and plant growth promotion. Bacterium GH1-13 was isolated from a reclaimed paddy field in Wando Island and identified as Bacillus velezensis using phylogenetic analysis on the basis of 16S rRNA and gyrB gene. It was confirmed that GH1-13 produced indole acetic acid (IAA) associated with promoted growth of rice root. GH1-13 showed characteristics of antagonization against the main pathogen of rice as well as diverse pathogenic fungi. GH1-13 had biosynthetic genes, bacillomycin, bacilycin, fengycin, iturin, and surfactin which are considered to be associated closely with inhibition of growth of pathogenic fungi and bacteria. This study showed that GH1-13 could be used as a multifunctional agent for biocontrol and growth promotion of crop.

바실러스는 토양 및 반추동물의 소화기관과 같은 다양한 곳에서 분리되고 있으며, 작물의 생육 촉진과 병방제를 위한 미생물 재제로서 널리 사용되고 있다. 바실러스 GH1-13 균주는 전남 완도의 간척지 논에서 분리되었으며, 16S rRNA 유전자와 gyrB 유전자를 이용하여 계통유전학적으로 분석한 결과 Bacillus velezensis인 것으로 동정되었다. GH1-13 균주의 특성을 분석한 결과 생육촉진에 관련된 IAA를 생성할 뿐 아니라 벼 뿌리의 생육을 촉진하는 것을 확인하였다. 또한 벼의 주요 병원균의 생육을 억제할 뿐 아니라 작물의 병원균인 다양한 곰팡이의 생육을 저해하였다. 더불어 식물병원 진균 및 세균의 생육 억제와 밀접하게 관련된 것으로 판단되는 bacillomycin, bacilycin, fengycin, iturin, surfactin을 생성하는 생합성유전자를 보유한 것으로 확인되었다. 본 연구는 GH1-13균주가 작물의 생육촉진과 병 방제를 동시에 해결할 수 있는 강력한 복합기능성 미생물제로의 가능성이 있음을 보여주었다.

Keywords

References

  1. Ahn, J. H., B. C. Kim, B. Y. Kim, S . J. Kim, J. Song, S. W. Kwon and H. Y. Weon (2014) Paenibacillus cucumis sp. nov. Isolated from Greenhouse Soil. J Microbiol. 52(6):460-464. https://doi.org/10.1007/s12275-014-4071-7
  2. Athukorala, S. N. P., W. G. D. Fernando and K. Y. Rashid (2009) Identification of antifungal antibiotics of Bacillus species isolated from different microhabitats using polymerase chain reaction and maldi-tof mass spectrometry. Can. J. Microbiol. 55(9):1021-1032. https://doi.org/10.1139/W09-067
  3. Avis, T. J., V. Gravel, H. Antoun and R. J. Tweddell (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol. Biochem. 40(7):1733-1740. https://doi.org/10.1016/j.soilbio.2008.02.013
  4. Cawoy, H., W. Bettiol, P. Fickers and M. Ongena (2011) Bacillus-based biological control of plant diseases, p. 273-302. In D.M. Stoytcheva (ed.), Pesticides in the modern world - pesticides use and management, InTech.
  5. Chowdhury, P. S., A. Hartmann, X. Gao and R. Borriss (2015) Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 - a review. Front. Microbiol. 6(780):1-11.
  6. Dunlap, C. A., S. J. Kim, S. W. Kwon and A. P. Rooney (2016) Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. Plantarum and 'Bacillus oryzicola' are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. Int. J. Syst. Evol. Microbiol. 66(3):1212-1217. https://doi.org/10.1099/ijsem.0.000858
  7. Fukushima, M., K. Kakinuma and R. Kawaguchi (2002) Phylogenetic analysis of Salmonella, Shigella, and Escherichia coli strains on the basis of the gyrB gene sequence. J. Clin. Microbiol. 40(8):2779-2785. https://doi.org/10.1128/JCM.40.8.2779-2785.2002
  8. Idris, E. E., D. J. Iglesias, M. Talon and R. Borriss (2007) Tryptophan-dependent production of indole-3-acetic acid (iaa) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol. Plant-Microbe Interact. 20(6):619-626. https://doi.org/10.1094/MPMI-20-6-0619
  9. Insam, H. and M. S. A. Seewald (2010) Volatile organic compounds (vocs) in soils. Biol. Fertil. Soils 46(3):199-213. https://doi.org/10.1007/s00374-010-0442-3
  10. Kim, B. Y., J. H. Ahn, H. Y. Weon, J. Song, S. I. Kim and W. G. Kim (2012) Isolation and characterization of Bacillus species possessing antifungal activity against ginseng root rot pathogens. Korean J. Pestic. Sci. 16(4):357-363. https://doi.org/10.7585/kjps.2012.16.4.357
  11. Lee, S. Y., H. Y. Weon, J. J. Kim, J. H. Han and W. G. Kim (2013) Control effect of the mixture of Bacillus amyloliquefaciens M27 and plant extract against cucumber powdery mildew. Korean J. Pestic. Sci. 17(4):435-439. https://doi.org/10.7585/kjps.2013.17.4.435
  12. Naqqash, T., S. Hameed, A. Imran, M. K. Hanif, A. Majeed and J. D. van Elsas (2016) Differential response of potato toward inoculation with taxonomically diverse plant growth promoting rhizobacteria. Front. Plant Sci. 7(1):144.
  13. Nicholson, L. W. (2002) Roles of Bacillus endospores in the environment. Cell. Mol. Life Sci. 59(3):410-416. https://doi.org/10.1007/s00018-002-8433-7
  14. Ongena, M. and P. Jacques (2008) Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends Microbiol. 16(3):115-125. https://doi.org/10.1016/j.tim.2007.12.009
  15. Park, K., D. Paul and W. H. Yeh (2006) Bacillus vallismortis extn-1-mediated growth promotion and disease suppression in rice. Plant Pathol. J. 22(3):278-282. https://doi.org/10.5423/PPJ.2006.22.3.278
  16. Raaijmakers, J. M., I. De Bruijn, O. Nybroe and M. Ongena (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: More than surfactants and antibiotics. Fems Microbiol. Rev. 34(6):1037-1062. https://doi.org/10.1111/j.1574-6976.2010.00221.x
  17. Ramarathnam, R., S. Bo, Y. Chen, W. G. D. Fernando, G. Xuewen and T. de Kievit (2007) Molecular and biochemical detection of fengycin- and bacillomycin d-producing Bacillus spp., antagonistic to fungal pathogens of canola and wheat. Can. J. Microbiol. 53(7):901-911. https://doi.org/10.1139/W07-049
  18. Richardson, A. E., J. M. Barea, A. M. McNeill and C. Prigent-Combaret (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321(1):305-339. https://doi.org/10.1007/s11104-009-9895-2
  19. Santoyo, G., M. d. C. Orozco-Mosqueda and M. Govindappa (2012) Mechanisms of biocontrol and plant growthpromoting activity in soil bacterial species of Bacillus and Pseudomonas: A review. Biocontrol Sci. Technol. 22(8):855-872. https://doi.org/10.1080/09583157.2012.694413
  20. Song, J., S. C. Lee, J. W. Kang, H. J. Baek and J. W. Suh (2004) Phylogenetic analysis of streptomyces spp. Isolated from potato scab lesions in korea on the basis of 16s rrna gene and 16s-23s rdna internally transcribed spacer sequences. Int. J. Syst. Evol. Microbiol. 54(1):203-209. https://doi.org/10.1099/ijs.0.02624-0
  21. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei and S. Kumar (2011) Mega 5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28(10):2731-2739. https://doi.org/10.1093/molbev/msr121
  22. Velivelli, S. L. S., P. De Vos, P. Kromann, S. Declerck and B. D. Prestwich (2014) Biological control agents: From field to market, problems, and challenges. Trends Biotechnol. 32(10):493-496. https://doi.org/10.1016/j.tibtech.2014.07.002
  23. Wang, L. T., F. L. Lee, C. J. Tai and H. Kasai (2007) Comparison of gyrB gene sequences, 16s rRNA gene sequences and DNA-DNA hybridization in the Bacillus subtilis group. Int. J. Syst. Evol. Microbiol. 57(8):1846-1850. https://doi.org/10.1099/ijs.0.64685-0
  24. Yamamoto, S. and S. Harayama (1995) PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl. Environ. Microbiol. 61(3):1104-1109.

Cited by

  1. Enhancement of Plant Growth and Drying Stress Tolerance by Bacillus velezensis YP2 Colonizing Kale Root Endosphere vol.26, pp.2, 2018, https://doi.org/10.11625/KJOA.2018.26.2.217
  2. 멜론 흰가루병 친환경 생물적 방제를 위한 Bacillus속 균의 길항력 평가 vol.46, pp.1, 2016, https://doi.org/10.4489/kjm.20180011
  3. 유용한 바실러스의 토양 접종에 따른 토착 세균 군집의 변화 vol.46, pp.3, 2016, https://doi.org/10.4014/mbl.1807.07027
  4. 복합기능성 Bacillus velezensis GH1-13 균주의 대량배양 최적화 및 특성 vol.27, pp.1, 2016, https://doi.org/10.11625/kjoa.2019.27.1.65
  5. Plant growth-promoting activity of beta-propeller protein YxaL secreted from Bacillus velezensis strain GH1-13 vol.14, pp.4, 2019, https://doi.org/10.1371/journal.pone.0207968
  6. Structure and Mechanism of Surfactin Peptide from Bacillus velezensis Antagonistic to Fungi Plant Pathogens vol.40, pp.7, 2016, https://doi.org/10.1002/bkcs.11757
  7. Analysis of Microbial Metabolites of Fermented Tea prepared with Aspergillus sp. B3 vol.31, pp.2, 2016, https://doi.org/10.17495/easdl.2021.4.31.2.133