References
- Ahn, J. H., B. C. Kim, B. Y. Kim, S . J. Kim, J. Song, S. W. Kwon and H. Y. Weon (2014) Paenibacillus cucumis sp. nov. Isolated from Greenhouse Soil. J Microbiol. 52(6):460-464. https://doi.org/10.1007/s12275-014-4071-7
- Athukorala, S. N. P., W. G. D. Fernando and K. Y. Rashid (2009) Identification of antifungal antibiotics of Bacillus species isolated from different microhabitats using polymerase chain reaction and maldi-tof mass spectrometry. Can. J. Microbiol. 55(9):1021-1032. https://doi.org/10.1139/W09-067
- Avis, T. J., V. Gravel, H. Antoun and R. J. Tweddell (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol. Biochem. 40(7):1733-1740. https://doi.org/10.1016/j.soilbio.2008.02.013
- Cawoy, H., W. Bettiol, P. Fickers and M. Ongena (2011) Bacillus-based biological control of plant diseases, p. 273-302. In D.M. Stoytcheva (ed.), Pesticides in the modern world - pesticides use and management, InTech.
- Chowdhury, P. S., A. Hartmann, X. Gao and R. Borriss (2015) Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 - a review. Front. Microbiol. 6(780):1-11.
- Dunlap, C. A., S. J. Kim, S. W. Kwon and A. P. Rooney (2016) Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. Plantarum and 'Bacillus oryzicola' are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. Int. J. Syst. Evol. Microbiol. 66(3):1212-1217. https://doi.org/10.1099/ijsem.0.000858
- Fukushima, M., K. Kakinuma and R. Kawaguchi (2002) Phylogenetic analysis of Salmonella, Shigella, and Escherichia coli strains on the basis of the gyrB gene sequence. J. Clin. Microbiol. 40(8):2779-2785. https://doi.org/10.1128/JCM.40.8.2779-2785.2002
- Idris, E. E., D. J. Iglesias, M. Talon and R. Borriss (2007) Tryptophan-dependent production of indole-3-acetic acid (iaa) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol. Plant-Microbe Interact. 20(6):619-626. https://doi.org/10.1094/MPMI-20-6-0619
- Insam, H. and M. S. A. Seewald (2010) Volatile organic compounds (vocs) in soils. Biol. Fertil. Soils 46(3):199-213. https://doi.org/10.1007/s00374-010-0442-3
- Kim, B. Y., J. H. Ahn, H. Y. Weon, J. Song, S. I. Kim and W. G. Kim (2012) Isolation and characterization of Bacillus species possessing antifungal activity against ginseng root rot pathogens. Korean J. Pestic. Sci. 16(4):357-363. https://doi.org/10.7585/kjps.2012.16.4.357
- Lee, S. Y., H. Y. Weon, J. J. Kim, J. H. Han and W. G. Kim (2013) Control effect of the mixture of Bacillus amyloliquefaciens M27 and plant extract against cucumber powdery mildew. Korean J. Pestic. Sci. 17(4):435-439. https://doi.org/10.7585/kjps.2013.17.4.435
- Naqqash, T., S. Hameed, A. Imran, M. K. Hanif, A. Majeed and J. D. van Elsas (2016) Differential response of potato toward inoculation with taxonomically diverse plant growth promoting rhizobacteria. Front. Plant Sci. 7(1):144.
- Nicholson, L. W. (2002) Roles of Bacillus endospores in the environment. Cell. Mol. Life Sci. 59(3):410-416. https://doi.org/10.1007/s00018-002-8433-7
- Ongena, M. and P. Jacques (2008) Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends Microbiol. 16(3):115-125. https://doi.org/10.1016/j.tim.2007.12.009
- Park, K., D. Paul and W. H. Yeh (2006) Bacillus vallismortis extn-1-mediated growth promotion and disease suppression in rice. Plant Pathol. J. 22(3):278-282. https://doi.org/10.5423/PPJ.2006.22.3.278
- Raaijmakers, J. M., I. De Bruijn, O. Nybroe and M. Ongena (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: More than surfactants and antibiotics. Fems Microbiol. Rev. 34(6):1037-1062. https://doi.org/10.1111/j.1574-6976.2010.00221.x
- Ramarathnam, R., S. Bo, Y. Chen, W. G. D. Fernando, G. Xuewen and T. de Kievit (2007) Molecular and biochemical detection of fengycin- and bacillomycin d-producing Bacillus spp., antagonistic to fungal pathogens of canola and wheat. Can. J. Microbiol. 53(7):901-911. https://doi.org/10.1139/W07-049
- Richardson, A. E., J. M. Barea, A. M. McNeill and C. Prigent-Combaret (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321(1):305-339. https://doi.org/10.1007/s11104-009-9895-2
- Santoyo, G., M. d. C. Orozco-Mosqueda and M. Govindappa (2012) Mechanisms of biocontrol and plant growthpromoting activity in soil bacterial species of Bacillus and Pseudomonas: A review. Biocontrol Sci. Technol. 22(8):855-872. https://doi.org/10.1080/09583157.2012.694413
- Song, J., S. C. Lee, J. W. Kang, H. J. Baek and J. W. Suh (2004) Phylogenetic analysis of streptomyces spp. Isolated from potato scab lesions in korea on the basis of 16s rrna gene and 16s-23s rdna internally transcribed spacer sequences. Int. J. Syst. Evol. Microbiol. 54(1):203-209. https://doi.org/10.1099/ijs.0.02624-0
- Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei and S. Kumar (2011) Mega 5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28(10):2731-2739. https://doi.org/10.1093/molbev/msr121
- Velivelli, S. L. S., P. De Vos, P. Kromann, S. Declerck and B. D. Prestwich (2014) Biological control agents: From field to market, problems, and challenges. Trends Biotechnol. 32(10):493-496. https://doi.org/10.1016/j.tibtech.2014.07.002
- Wang, L. T., F. L. Lee, C. J. Tai and H. Kasai (2007) Comparison of gyrB gene sequences, 16s rRNA gene sequences and DNA-DNA hybridization in the Bacillus subtilis group. Int. J. Syst. Evol. Microbiol. 57(8):1846-1850. https://doi.org/10.1099/ijs.0.64685-0
- Yamamoto, S. and S. Harayama (1995) PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl. Environ. Microbiol. 61(3):1104-1109.
Cited by
- Enhancement of Plant Growth and Drying Stress Tolerance by Bacillus velezensis YP2 Colonizing Kale Root Endosphere vol.26, pp.2, 2018, https://doi.org/10.11625/KJOA.2018.26.2.217
- 멜론 흰가루병 친환경 생물적 방제를 위한 Bacillus속 균의 길항력 평가 vol.46, pp.1, 2016, https://doi.org/10.4489/kjm.20180011
- 유용한 바실러스의 토양 접종에 따른 토착 세균 군집의 변화 vol.46, pp.3, 2016, https://doi.org/10.4014/mbl.1807.07027
- 복합기능성 Bacillus velezensis GH1-13 균주의 대량배양 최적화 및 특성 vol.27, pp.1, 2016, https://doi.org/10.11625/kjoa.2019.27.1.65
- Plant growth-promoting activity of beta-propeller protein YxaL secreted from Bacillus velezensis strain GH1-13 vol.14, pp.4, 2019, https://doi.org/10.1371/journal.pone.0207968
- Structure and Mechanism of Surfactin Peptide from Bacillus velezensis Antagonistic to Fungi Plant Pathogens vol.40, pp.7, 2016, https://doi.org/10.1002/bkcs.11757
- Analysis of Microbial Metabolites of Fermented Tea prepared with Aspergillus sp. B3 vol.31, pp.2, 2016, https://doi.org/10.17495/easdl.2021.4.31.2.133