DOI QR코드

DOI QR Code

Characterization of Plant Growth-Promoting Traits of Free-Living Diazotrophic Bacteria and Their Inoculation Effects on Growth and Nitrogen Uptake of Crop Plants

  • Islam, Md. Rashedu (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Madhaiyan, M. (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Boruah, Hari P.Deka (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Yim, Woo-Jong (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Lee, Gill-Seung (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Saravanan, V.S. (Department of Microbiology, Indira Gandhi College of Arts and Science) ;
  • Fu, Qingling (Key Laboratory of Subtropical Agricultural Resource and Environment, Ministry of Agriculture, Huazhong Agricultural University) ;
  • Hu, Hongqing (Key Laboratory of Subtropical Agricultural Resource and Environment, Ministry of Agriculture, Huazhong Agricultural University) ;
  • Sa, Tongmin (Department of Agricultural Chemistry, Chungbuk National University)
  • Published : 2009.10.31

Abstract

The search for diverse plant growth-promoting (PGP) diazotrophic bacteria is gaining momentum as efforts are made to exploit them as biofertilizers for various economically important crops. In the present study, 17 diazotrophic strains belonging to eight different genera isolated from rice paddy fields were screened for multiple PGP traits and evaluated for their inoculation effects on canola and rice plants. All of the strains tested positive for 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity and production of indole 3-acetic acid (IAA) and ammonia ($NH_3$). Additionally, four of the strains were able to solubilize phosphorus (P), five tested positive for zinc (Zn) solubilization and sulfur (S) oxidation, and eight strains produced siderophores. Based on the presence of multiple PGP traits, 10 strains were selected for inoculation studies. Treatment with Herbaspirillum sp. RFNB26 resulted in maximum root length (54.3%), seedling vigor, and dry biomass in canola, whereas Paenibacillus sp. RFNB4 exhibited the lowest activity under gnotobiotic conditions. However, under pot culture conditions, Paenibacillus sp. RFNB4 significantly increased plant height and dry biomass production by 42.3% and 29.5%, respectively. Canola plants and rhizosphere soils inoculated with Bacillus sp. RFNB6 exhibited significantly higher nitrogenase activity. In greenhouse experiments, Serratia sp. RFNB18 increased rice plant height by 35.1%, Xanthomonas sp. RFNB24 enhanced biomass production by 84.6%, and rice rhizosphere soils inoculated with Herbaspirillum sp. RFNB26 exhibited the highest nitrogenase activity. Our findings indicate that most of the selected strains possess multiple PGP properties that significantly improve the growth parameters of the two plants when tested under controlled conditions.

Keywords

References

  1. Anandham, R., P. Indiragandhi, M. Madhaiyan, J. Chung, K. Y. Ryu, H. J. Jee, and T. M. Sa. 2009. Thiosulfate oxidation and mixotrophic growth of Methylobacterium goesingense and Methylobacterium fujisawaense. J. Microbiol. Biotechnol. 19:17-22
  2. Arnow, E. 1937. Colorimetric estimation of the components of 3,4-dihydroxyphenylalanine-tyrosine mixtures. J. Biol. Chem. 118: 531-537
  3. Atkin, C. L., J. B. Neilands, and H. J. Phaff. 1970. Rhodotorulic acid from species of Leucosporidium, Rhodosporidium, Rhodotorula, Sporidiobolus, and Sporobolomyces, and a new alanine-containing ferrichrome from Cryptococcus melibiosum. J. Bacteriol. 103: 722-733
  4. Balandreau, J., V. Viallard, B. Cournoyer, T. Coenye, S. Laevens, and P. Vandamme. 2001. Burkholderia cepacia genomovar III is a common plant-associated bacterium. Appl. Environ. Microbiol. 67: 982-985 https://doi.org/10.1128/AEM.67.2.982-985.2001
  5. Baldani, V. L. D., J. I. Baldani, and J. D$\ddot{o}$bereiner. 2000. Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp. Biol. Fertil. Soils 30: 485-491 https://doi.org/10.1007/s003740050027
  6. Bashan, Y. and G. Holguin. 1998. Proposal for the division of plant growth-promoting rhizobacteria into two classifications:Biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol. Biochem. 30: 1225-1228 https://doi.org/10.1016/S0038-0717(97)00187-9
  7. Belimov, A. A., V. I. Safronova, T. A. Sergeyeva, T. N. Egorova, V. A. Matveyeva, and V. E. Tsyganov. 2001. Characterization of plant growth-promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can. J. Microbiol. 47: 642-652 https://doi.org/10.1139/cjm-47-7-642
  8. Cattelan, A. J., P. G. Hartel, and J. J. Fuhrmann. 1999. Screening for plant growth promoting rhizobacteria to promote early soybean growth. Soil Sci. Soc. Am. J. 63: 1670-1680 https://doi.org/10.2136/sssaj1999.6361670x
  9. Choudhury, A. T. M. A. and I. R. Kennedy. 2004. Prospects and potentials for systems of biological nitrogen fixation. Biol. Fertil. Soils 39: 219-227 https://doi.org/10.1007/s00374-003-0706-2
  10. Cocking, E. C. 2003. Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil 252: 169-175 https://doi.org/10.1023/A:1024106605806
  11. Cvijanovic, D., G. Cvijanovic, and J. Subic. 2006. Ecological, economic and marketing aspects of the application of biofertilizers in the production of organic food. Economic and Agriculture year, 53 Special edition UDC 631.147:631.847 YU ISSN 0352-3462, 39-44
  12. Dell'Amico, E., L. Cavalca, and V. Andreoni. 2005. Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. FEMS Microbiol. Ecol. 52: 153-162 https://doi.org/10.1016/j.femsec.2004.11.005
  13. Dobbelaere, S., J. Vanderleyden, and Y. Okon. 2003. Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit. Rev. Plant Sci. 22: 107-149 https://doi.org/10.1080/713610853
  14. Elbeltagy, A., K. Nishioka, T. Sato, H. Suzuki, B. Ye, T. Hamada, T. Isawa, H. Mitsui, and K. Minamisawa. 2001. Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl. Environ. Microbiol. 67: 5285-5293 https://doi.org/10.1128/AEM.67.11.5285-5293.2001
  15. Estrada-De Los Santos, P., Roc$\acute{i}$o Bustillos-Cristales, and Jes$\acute{u}$s . Caballero-Mellado. 2001. Burkholderia, a genus rich in plantassociated nitrogen fixers with wide environmental and geographic distribution. Appl. Environ. Microbiol. 67: 2790-2798 https://doi.org/10.1128/AEM.67.6.2790-2798.2001
  16. Glick, B. R., B. Todorovic, J. Czarny, Z. Cheng, J. Duan, and B. McConkey Guiamet, Juan Jos$\acute{e}$ 2007. Promotion of plant growth by bacterial ACC deaminase. Crit. Rev. Plant Sci. 26: 1-16 https://doi.org/10.1080/07352680601147901
  17. Govindarajan, M., J. Balandreau, S. W. Kwon, H. Y. Weon, and C. Lakshminarasimhan. 2008. Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb. Ecol. 55: 21-37 https://doi.org/10.1007/s00248-007-9247-9
  18. Hameeda, B., G. Harini, O. P. Rupela, S. P. Wani, and G. Reddy. 2008. Growth promotion of maize by phosphate solubilizing bacteria isolated from composts and macrofauna. Microbiol. Res. 163: 234-242 https://doi.org/10.1016/j.micres.2006.05.009
  19. Kennedy, I. R., A. T. M. A. Choudhury, and Mih$\acute{a}$ly L. Keesk$\acute{e}$s. 2004. Non-symbiotic bacterial diazotrophs in crop-farming systems: Can their potential fot plant growth promotion be better exploited? Soil Biol. Bioche. 36: 1229-1244 https://doi.org/10.1016/j.soilbio.2004.04.006
  20. Kim, C., Mih$\acute{a}$ly L. Kecsk$\acute{e}$s, R. J. Deaker, K. Gilchrist, P. B. New, I. R. Kennedy, S. Kim, and T. M. Sa. 2005. Wheat root colonization and nitrogenase activity by Azospirillum isolates from crop plants in Korea. Can. J. Microbiol. 51: 948-956 https://doi.org/10.1139/w05-052
  21. Kirchhof, G., V. M. Reis, J. I. Baldani, B. Eckert, J. D$\ddot{o}$bereiner, and A. Hartmann. 1997. Occurence, physiological and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants. Plant Soil 194: 45-55 https://doi.org/10.1023/A:1004217904546
  22. Li, J., H. Daniel, T. C. Charles, and B. R. Glick. 2000. An ACC deaminase minus mutant of Enterobacter cloacae UW4 no longer promotes root elongation. Curr. Microbiol. 41: 101-105 https://doi.org/10.1007/s002840010101
  23. Lifshitz, R., J. W. Kloepper, M. Kozlowski, C. Simonson, J. Carlson, E. M. Tipping, and I. Zaleska. 1987. Growth promotion of canola (rapeseed) seedlings by a strain of Pseudomonas putida under gnotobiotic conditions. Can. J. Microbiol. 33:390-395 https://doi.org/10.1139/m87-068
  24. Lorck, H. 1948. Production of hydrocyanic acid by bacteria. Physiol. Plant 1: 142-146 https://doi.org/10.1111/j.1399-3054.1948.tb07118.x
  25. Lucy, M., E. Reed, and B. R. Glick. 2004. Application of plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1-25 https://doi.org/10.1023/B:ANTO.0000024903.10757.6e
  26. Mahadevappa, M. and V. V. Shenoy. 2000. Towards nitrogen fixing rice (Oryza sativa). Adv. Agric. Res. India 13: 131-139
  27. Miles, A. A. and S. S. Misra. 1938. The estimation of the bacterial powder of blood. J. Hygiene (Cambridge) 38: 732-749 https://doi.org/10.1017/S002217240001158X
  28. Mirza, M. S., G. Rasul, S. Mehnaz, J. K. Ladha, R. B. So, S. Ali, and K. A. Malik. 2000. Beneficial effects of inoculated nitrogen-fixing bacteria on rice, pp. 191-204. In J. K. Ladha and P. M. Reddy (eds.). The Quest for Nitrogen Fixation in Rice. International Rice Research Institute, Los Ba$\~{n}$os, The Philippines
  29. Mirza, M. S., S. Mehnaz, P. Normand, C. Prigent-Combaret, Y. Mo$\ddot{e}$nne-Lyccoz, Ren $\grave{e}$ Bally, and K. A. Malik. 2006. Molecular characterization and PCR detection of a nitrogen-fixing Pseudomonas strain promoting rice growth. Biol. Fertil. Soils 43: 163-170 https://doi.org/10.1007/s00374-006-0074-9
  30. Oliveira, A. L. M., S. Urquiaga, J. D$\ddot{o}$bereiner, and J. I. Baldani. 2002. The effect of inoculating endophytic $N_2$-fixing bacteria on micropropagated sugarcane plants. Plant Soil 242: 205-215 https://doi.org/10.1023/A:1016249704336
  31. Penrose, D. M. and B. R. Glick. 2003. Methods for isolating and characterizing ACC deaminase-containing plant growth promoting rhizobacteria. Physiol. Plant 118: 10-15 https://doi.org/10.1034/j.1399-3054.2003.00086.x
  32. Piao, Z., Z. Cui, B. Yin, J. Hu, C. Zhou, G. Xie, B. Su, and S. Yin. 2005. Changes in acetylene reduction activities and effects of inoculated rhizosphere nitrogen-fixing bacteria on rice. Biol. Fertil. Soils 41: 371-378 https://doi.org/10.1007/s00374-005-0860-9
  33. Pikovskaya, R. I. 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17: 362-370
  34. Poonguzhali, S., M. Madhaiyan, and T. M. Sa. 2008. Isolation and identification of phosphate solubilizing bacteria from Chinese cabbage and their effect on growth and phosphorus utilization of plants. J. Microbiol. Biotechnol. 18: 773-777
  35. Reis, V. M., F. I. Olivares, and J. Dobereiner. 1994. Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its endophytic habitat. World J. Microbiol. Biotechnol. 10: 101-104
  36. Rodr $\acute{i}$ https://doi.org/10.1016/S0734-9750(99)00014-2
  37. Saravanan, V. S., M. Madhaiyan, and M. Thangaraju. 2007. Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66: 1794-1798 https://doi.org/10.1016/j.chemosphere.2006.07.067
  38. Schwyn, B. and J. B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56 https://doi.org/10.1016/0003-2697(87)90612-9
  39. Shaharoona, B., G. M. Jamro, Z. A. Zahir, M. Arshad, and K. S. Memon. 2007. Effectiveness of various Pseudomonas spp. and Burkholderia caryophylli containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.). J. Microbiol. Biotechnol. 17: 1300-1307
  40. Siddiqui, Z. A. 2005. PGPR: Prospective biocontrol agents of plant pathogens, pp. 111-142 In: PGPR: Biocontrol and Biofertilization Springer, The Netherlands
  41. Tr$\hat{a}$n Van, V., O. Berge, S. Ng$\hat{o}$ K$\hat{e}$. Ke, J. Balandreau, and T. Heulin. 2000. Repeated beneficial effects of rice inoculation with a strain of Burkholderia vietnamiensis on early and late yield components in low fertility sulphate acid soils of Vietnam. Plant Soil 218: 273-284 https://doi.org/10.1023/A:1014986916913
  42. Ueda, T., Y. Suga, N. Yahiro, and T. Matsuguchi. 1995. Remarkable $N_2$-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. J. Bacteriol. 177: 1414-1417
  43. Vial, L., M. C. Groleau, V. Dekimpe, and E. Deziel. 2007. Burkholderia diversity and versatility: An inventory of the extracellular products. J. Microbiol. Biotechnol. 17: 1407-1429
  44. Wainright, M. 1984. Sulfur oxidation in soils. Adv. Agron. 37:350-392
  45. Wani, P. A., M. S. Khan, and A. Zaidi. 2007. Chromium reduction, plant growth-promoting potentials, and metal solubilization by Bacillus sp. isolated from alluvial soil. Curr. Microbiol. 54:237-243 https://doi.org/10.1007/s00284-006-0451-5
  46. Wu, S. C., Z. H. Caob, Z. G. Lib, K. C. Cheunga, and M. H. Wonga. 2005. Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: A greenhouse trial. Geoderma 125: 155-166 https://doi.org/10.1016/j.geoderma.2004.07.003
  47. Yim, W. J., S. Poonguzhali, M. Madhaiyan, and T. M. Sa. 2009. Characterization of plant-growth promoting diazotrophic bacteria isolated from field-grown Chinese cabbage under different fertilization conditions. J. Microbiol. 47: 147-155 https://doi.org/10.1007/s12275-008-0201-4

Cited by

  1. Ammonium Production During the Nitrogen-Fixing Process by Wild Paenibacillus Strains and Cell-Free Extract Adsorbed on Nano $TiO_2$ Particles vol.20, pp.8, 2009, https://doi.org/10.4014/jmb.1003.03002
  2. Toxicological Effects of Selective Herbicides on Plant Growth Promoting Activities of Phosphate Solubilizing Klebsiella sp. Strain PS19 vol.62, pp.2, 2009, https://doi.org/10.1007/s00284-010-9740-0
  3. Herbaspirillum-plant interactions: microscopical, histological and molecular aspects vol.356, pp.1, 2009, https://doi.org/10.1007/s11104-012-1125-7
  4. Early responses of rice (Oryza sativa L.) seedlings to inoculation with beneficial diazotrophic bacteria are dependent on plant and bacterial genotypes vol.356, pp.1, 2009, https://doi.org/10.1007/s11104-012-1274-8
  5. Nitrogen‐fixing bacteria with multiple plant growth‐promoting activities enhance growth of tomato and red pepper vol.53, pp.12, 2013, https://doi.org/10.1002/jobm.201200141
  6. Nitrogen signalling in plant interactions with associative and endophytic diazotrophic bacteria vol.65, pp.19, 2014, https://doi.org/10.1093/jxb/eru319
  7. Differential plant growth promotion and nitrogen fixation in two genotypes of maize by several Herbaspirillum inoculants vol.387, pp.1, 2015, https://doi.org/10.1007/s11104-014-2295-2
  8. Isolation and identification of indigenous plant growth promoting rhizobacteria from Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize ( Zea mays L.) vol.6, pp.None, 2015, https://doi.org/10.3389/fmicb.2015.00207
  9. Isolation and Identification of Plant Growth Promoting Rhizobacteria from Cucumber Rhizosphere and Their Effect on Plant Growth Promotion and Disease Suppression vol.6, pp.None, 2009, https://doi.org/10.3389/fmicb.2015.01360
  10. Characterization of N2-fixing plant growth promoting endophytic and epiphytic bacterial community of Indian cultivated and wild rice (Oryza spp.) genotypes vol.243, pp.3, 2009, https://doi.org/10.1007/s00425-015-2444-8
  11. Investigating the effect of microbial inoculants Frankia F1 on growth-promotion, rhizosphere soil physicochemical properties, and bacterial community of ginseng vol.172, pp.None, 2009, https://doi.org/10.1016/j.apsoil.2021.104369