• Title/Summary/Keyword: InGaZnO film

Search Result 289, Processing Time 0.049 seconds

Thermally stability of transparent Ga-doped ZnO thin films for TeO applications (투명 전도막 응용을 위한 Ga 도핑된 ZnO 박막의 열적 안정성에 관한 연구)

  • Oh, Sang-Hoon;Ahn, Byung-Du;Lee, Choong-Hee;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.48-49
    • /
    • 2006
  • Highly conductive and transparent films of Ga-doped ZnO have been prepared by pulsed laser deposition using a ZnO target with 3 wt% ${Ga_2}{O_3}$ dopant. Films with the resistivity as low as $3.3{\times}10^{-4}{\Omega}cm$ and the transmittance above 80 % at the wavelength of 400 to 800 nm can be fabricated on glass substrate at room temperature. It is shown that a stable resistivity for the use in oxidation ambient at high temperature can be obtained for the films. Heat treatments were performed to examine the thermal stability of ZnO and GZO films at ptemperature range from $100^{\circ}C$ to $400^{\circ}C$ in $O_2$ ambient for 30 minutes. The resistivity of ZnO film annealed at $400^{\circ}C$ increased by two orders of magnitude, in case of GZO film was relatively stable up to at $400^{\circ}C$. For practical applications at high temperatures the thermal stability of resistivity of GZO thin films might become an advantage for transparent electrodes.

  • PDF

Effect of Process Variation of Al Grid and ZnO Transparent Electrode on the Performance of Cu(In,Ga)Se2 Solar Cells (Al 그리드와 ZnO 투명전도막 의 공정변화에 따른 Cu(In,Ga)Se2 박막태양전지의 특성 연구)

  • Cho, Bo Hwan;Kim, Seon Cheol;Mun, Sun Hong;Kim, Seung Tae;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.3 no.1
    • /
    • pp.32-38
    • /
    • 2015
  • CIGS solar cell consisted of various films. In this research, we investigated electrode materials in $Cu(In,Ga)Se_2$ (CIGS) cells, including Al-doped ZnO (ZnO:Al), intrinsic ZnO (i-ZnO), and Al films. The sputtered ZnO:Al film with a sputtering power at 200W showed the lowest series resistance and highest cell efficiency. The electrical resistivity of the 200-W sputtered ZnO:Al film was $5.2{\times}10^{-4}{\Omega}{\cdot}cm$ by the rapid thermal annealing at $200^{\circ}C$ for 1 min. The electrical resistivity of i-ZnO was not measurable due to its high resistance. But the optical transmittance was highest with less oxygen supply and high efficiency cell was achieved with $O_2/(Ar+O_2)$ ratio was 1% due to the increase of short-circuit current. No significant change in the cell performance by inserting a Ni layer between Al and ZnO:Al films was observed.

Effect of Annealing on the Structural, Electrical and Optical Characteristics of Ga-doped ZnO(GZO)films (Ga doped ZnO 박막의 열처리 조건에 따른 구조 및 전기적 특성에 관한 연구)

  • Oh, Su-Young;Kim, Eung-Kwon;Lee, Tae-Yong;Kang, Hyun-Il;Kim, Bong-Seok;Song, Joon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.9
    • /
    • pp.776-779
    • /
    • 2007
  • In this study we present the effect of annealing temperatures on the structural, electrical and optical characteristics of Ga-doped ZnO (GZO) films. GZO target is deposited on coming 7059 glass substrates by DC sputtering. and then GZO films are annealed at temperatures of 400, 500, $600^{\circ}C$ in air ambient for 20 min. in this case of as-grown film, it shows the resistivity of $6{\times}10^{-1}{\Omega}{\cdot}cm$ and transmittance under 85%, whereas the electrical and optical properties of film annealed at $500^{\circ}C$ are enhanced up to $1.9{\times}10^{-3}{\Omega}{\cdot}cm$ and 90%, respectively.

Luminescence Characteristics of ZnGa2O4:Mn2+,Cr3+ Phosphor and Thick Film

  • Cha, Jae-Hyeok;Choi, Hyung-Wook
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.1
    • /
    • pp.11-15
    • /
    • 2011
  • In this study, $ZnGa_2O_4$ phosphors in its application to field emission displays and electroluminescence were synthesized through the precipitation method and $Mn^{2+}$ ions. A green luminescence activator, $Cr^{3+}$ ions, and a red luminescence activator were separately doped into $ZnGa_2O_4$, which was then screen printed to an indium tin oxide substrate. The thick films of the $ZnGa_2O_4$ were deposited with the various thicknesses using nano-sized powder. The best luminescence characteristics were shown at a thickness of 60 ${\mu}m$. Additionally, green-emission $ZnGa_2O_4:Mn^{2+}$ and red-emission $ZnGa_2O_4:Cr^{3+}$ phosphor thick films, which have superior characteristics, were manufactured through the screen-printing method. These results indicate that $ZnGa_2O_4$ phosphors prepared through the precipitation method have wide application as phosphor of the full color emission.

Device Degradation with Gate Lengths and Gate Widths in InGaZnO Thin Film Transistors (게이트 길이와 게이트 폭에 따른 InGaZnO 박막 트랜지스터의 소자 특성 저하)

  • Lee, Jae-Ki;Park, Jong-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1266-1272
    • /
    • 2012
  • An InGaZnO thin film transistor with different gate lengths and widths have been fabricated and their device degradations with device sizes have been also performed after negative gate bias stress. The threshold voltage and subthreshold swing have been decreased with decrease of gate length. However, the threshold voltages were increased with the decrease of gate lengths. The transfer curves were negatively shifted after negative gate stress and the threshold voltage was decreased. However, the subthreshold swing was not changed after negative gate stress. This is due to the hole trapping in the gate dielectric materials. The decreases of the threshold voltage variation with the decrease of gate length and the increase of gate width were believed due to the less hole injection into gate dielectrics after a negative gate stress.

Effect of Ga Addition on the Electrical and Structural Properties of (Zn,Mg)O Transparent Electrode Films (Ga 첨가량이 (Zn,Mg)O 투명전극 막의 전기적, 결정학적 특성에 미치는 영향)

  • Suh, Kwang-Jong;Wakahara, Akihiro;Yoshida, Akira
    • Korean Journal of Materials Research
    • /
    • v.15 no.8
    • /
    • pp.491-495
    • /
    • 2005
  • (Zn,Mg)O (ZMO) thin films doped with Ga $(0\~0.03mol\%)$ in the target source were prepared by pulsed laser deposition on c-plane sapphire substrates at $500^{\circ}C$, and the effect of Ga contents on the properties of the electrical, optical and crystal properties of the deposited films was investigated. From X-ray diffraction patterns, ZMO film doped with $0.02 mol\%$ Ga showed crystal structure with c-axis preferred orientation, showing only the (0002) and (0004) diffraction peaks. In contrast, ZMO film doped with $Ga=0.03 mol\%$ showed a randomly oriented crystal structure. All the samples were highly transparent, showing the transmittance values of above $85\%$ in the visible region. For all the Ga doped ZMO films, the value of energy band gap was found to be about 3.5 eV, regardless of their Ga contents. From the Hall measurements, the resistivity and the carrier density for the ZMO film doped with $0.01 mol\%$ Ga were about $5\times10^{-4}\Omega-cm$ and $2\times10^{21}cm^{-3}$, respectively.

Structural Evolution of ZnO:Ga Thin Film on Profiled Substrate Grown by Radio Frequency Sputtering

  • Sun, J.H.;Kim, J.H.;Ahn, B.G.;Park, S.Y.;Jung, E.J.;Lee, J.H.;Kang, H.C.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.72-72
    • /
    • 2011
  • Recently, Zinc oxide (ZnO) nano-structures have been received attractive attention because of their outstanding optical and electrical properties. It might be a promising material considered for applications to photonic and electronic devices such as ultraviolet light emitting diode, thin film transistor, and gas sensors. ZnO nano-structures can be typically synthesized by the VLS growth mode and self-assembly. In the VLS growth mode using various growth techniques, the noble metal catalysts such as Au and Sn were used. However, the growth of ZnO nano-structures on nano-crystalline Au seeds using radio frequency (RF) magnetron sputtering might be explained by the profile coating, i.e. the ZnO nano-structures were a morphological replica of Au seeds. Ga doped ZnO (ZnO:Ga) nano-structures using this concept were synthesized and characterized by XRD, AFM, SEM, and TEM. We found that surface morphology is drastically changed from initial islands to later sun-flower typed nano-structures. We will present the structural evolution of ZnO:Ga nano-structures with increasing the film thickness.

  • PDF

Properties of the RF Sputter Deposited n-ZnO Thin-Film and the n-ZnO/p-GaN heterojunction LED (RF스퍼터링법으로 성장시킨 n-ZnO 박막과 n-ZnO/p-GaN 이종접합 LED의 특성)

  • Shin, Dongwhee;Byun, Changsub;Kim, Seontai
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.161-167
    • /
    • 2013
  • The ZnO thin films were grown on GaN template substrates by RF magnetron sputtering at different RF powers and n-ZnO/p-GaN heterojunction LEDs were fabricated to investigate the effect of the RF power on the characteristics of the n-ZnO/p-GaN LEDs. For the growth of the ZnO thin films, the substrate temperature was kept constant at $200^{\circ}C$ and the RF power was varied within the range of 200 to 500W at different growth times to deposit films of 100 nm thick. The electrical, optical and structural properties of ZnO thin films were investigated by ellipsometry, X-ray diffraction (XRD), atomic force microscopy (AFM), photoluminescence (PL) and by assessing the Hall effect. The characteristics of the n-ZnO/p-GaN LEDs were evaluated by current-voltage (I-V) and electroluminescence (EL) measurements. ZnO thin films were grown with a preferred c-axis orientation along the (0002) plane. The XRD peaks shifted to low angles and the surface roughness became non-uniform with an increase in the RF power. Also, the PL emission peak was red-shifted. The carrier density and the mobility decreased with the RF power. For the n-ZnO/p-GaN LED, the forward current at 20 V decreased and the threshold voltage increased with the RF power. The EL emission peak was observed at approximately 435 nm and the luminescence intensity decreased. Consequently, the crystallinity of the ZnO thin films grown with RF sputtering powers were improved. However, excess Zn affected the structural, electrical and optical properties of the ZnO thin films when the optimal RF power was exceeded. This excess RF power will degrade the characteristics of light emitting devices.

Large Size and High Resolution Organic Light Emitting Diodes Based on the In-Ga-Zn-O Thin Film Transistors with a Coplanar Structure

  • Hong Jae Shin
    • Korean Journal of Materials Research
    • /
    • v.33 no.12
    • /
    • pp.511-516
    • /
    • 2023
  • Amorphous In-Ga-Zn-O (a-IGZO) thin film transistors (TFTs) with a coplanar structure were fabricated to investigate the feasibility of their potential application in large size organic light emitting diodes (OLEDs). Drain currents, used as functions of the gate voltages for the TFTs, showed the output currents had slight differences in the saturation region, just as the output currents of the etch stopper TFTs did. The maximum difference in the threshold voltages of the In-Ga-Zn-O (a-IGZO) TFTs was as small as approximately 0.57 V. After the application of a positive bias voltage stress for 50,000 s, the values of the threshold voltage of the coplanar structure TFTs were only slightly shifted, by 0.18 V, indicative of their stability. The coplanar structure TFTs were embedded in OLEDs and exhibited a maximum luminance as large as 500 nits, and their color gamut satisfied 99 % of the digital cinema initiatives, confirming their suitability for large size and high resolution OLEDs. Further, the image density of large-size OLEDs embedded with the coplanar structure TFTs was significantly enhanced compared with OLEDs embedded with conventional TFTs.

Alanysis of the Optical Properties of p-type ZnO Thin Films Doped by P based on Ampouele-tube Method (Ampoule-tube 법으로 Phosphorus를 도핑한 P형 ZnO 박막의 광학적 특성 분석)

  • Yoo, In-Sung;Oh, Sang-Hyun;So, Soon-Jin;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.145-146
    • /
    • 2006
  • The most Important research topic in the development of ZnO LED and LD is the production of p-type ZnO thin film that has minimal stress with outstanding stoichiometric ratio. In this study, Phosphorus diffused into the undoped ZnO thin films using the ampoule-tube method for the production of p-type znO thin films. The undoped ZnO thin films were deposited by RF magnetron sputtering system on $GaAs_{0.6}P_{0.4}$/GaP and Si wafers. 4N Phosphorus (P) was diffused into the undoped ZnO thin films in ampoule-tube which was performed and $630^{\circ}C$ during 3hr. We found the diffusion condition of the conductive ZnO films which had p-type properties with the highest mobility of above 532 $cm^2$/Vs compared with other studies PL spectra measured at 10K for the purpose of analyzing optical properties of p-type ZnO thin film showed strong PL intensity in the UV emission band around 365nm ~ 415nm and 365nm ~ 385nm.

  • PDF