DOI QR코드

DOI QR Code

Luminescence Characteristics of ZnGa2O4:Mn2+,Cr3+ Phosphor and Thick Film

  • Cha, Jae-Hyeok (Department of Electrical Engineering, Kyungwon University) ;
  • Choi, Hyung-Wook (Department of Electrical Engineering, Kyungwon University)
  • Received : 2010.11.16
  • Accepted : 2001.12.22
  • Published : 2011.02.28

Abstract

In this study, $ZnGa_2O_4$ phosphors in its application to field emission displays and electroluminescence were synthesized through the precipitation method and $Mn^{2+}$ ions. A green luminescence activator, $Cr^{3+}$ ions, and a red luminescence activator were separately doped into $ZnGa_2O_4$, which was then screen printed to an indium tin oxide substrate. The thick films of the $ZnGa_2O_4$ were deposited with the various thicknesses using nano-sized powder. The best luminescence characteristics were shown at a thickness of 60 ${\mu}m$. Additionally, green-emission $ZnGa_2O_4:Mn^{2+}$ and red-emission $ZnGa_2O_4:Cr^{3+}$ phosphor thick films, which have superior characteristics, were manufactured through the screen-printing method. These results indicate that $ZnGa_2O_4$ phosphors prepared through the precipitation method have wide application as phosphor of the full color emission.

Keywords

References

  1. J. H. Lee, H. J. Park, K. Yoo, B. W. Kim, J. C. Lee, and S. Park, J. Eur. Ceram. Soc. 27, 965 (2007) [DOI: 10.1016/j.jeurceramsoc.2006.04.153].
  2. A. Vecht, C. Gibbons, D. Davies, X. Jing, P. Marsh, T. Ireland, J. Silver, A. Newport, and D. Barber, J. Vac. Sci. Technol. B 17, 750 (1999) [DOI: 10.1116/1.590633].
  3. M. Yu, J. Lin, Y. H. Zhou, and S. B. Wang, Mater. Lett. 56, 1007 (2002) [DOI: 10.1016/s0167-577x(02)00664-x].
  4. K. E. Sickafus, J. M. Wills, and N. W. Grimes, J. Am. Ceram. Soc. 82, 3279 (1999) [DOI: 10.1111/j.1151-2916.1999.tb02241.x].
  5. T. Omata, N. Ueda, K. Ueda, and H. Kawazoe, Appl. Phys. Lett. 64, 1077 (1994) [DOI: 10.1063/1.110937].
  6. B. Qiao, Z. L. Tang, Z. T. Zhang, and L. Chen, Mater. Lett. 61, 401 (2007) [DOI: 10.1016/j.matlet.2006.04.070].
  7. Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, V. Fernicola, and L. Crovini, Phys. Rev. B 51, 2656 (1995) [DOI: 10.1103/Phys-RevB.51.2656].
  8. J. S. Kim, H. I. Kang, W. N. Kim, J. I. Kim, J. C. Choi, H. L. Park, G. C. Kim, T. W. Kim, Y. H. Hwang, S. I. Mho, M. C. Jung, and M. Han, Appl. Phys. Lett. 82, 2029 (2003) [DOI: 10.1063/1.1564632].
  9. J. S. Kim, H. L. Park, G. C. Kim, T. W. Kim, Y. H. Hwang, H. K. Kim, S. I. Mho, and S. D. Han, Solid State Commun. 126, 515 (2003) [DOI: 10.1016/s0038-1098(03)00238-2].
  10. P. D. Rack, J. J. Peterson, M. D. Potter, and W. Park, J. Mater. Res. 16, 1429 (2001) [DOI: 10.1557/JMR.2001.0199].

Cited by

  1. An investigation of the adiabatic potential surface in single crystals with copper ions vol.40, pp.5, 2014, https://doi.org/10.1063/1.4878126
  2. Blue luminescence from ZnGa 2 O 4 : Effect of lattice distortion and particle size vol.188, 2017, https://doi.org/10.1016/j.jlumin.2017.04.056
  3. Tuneable Nanostructuring of Highly Transparent Zinc Gallogermanate Glasses and Glass-Ceramics vol.2, pp.4, 2014, https://doi.org/10.1002/adom.201400007
  4. Influence of annealing temperature on material properties of red emitting ZnGa2O4: Cr3+ nanostructures vol.88, pp.2, 2018, https://doi.org/10.1007/s10971-018-4830-8
  5. Effect of citric acid on material properties of ZnGa2O4:Cr3+ nanopowder prepared by sol–gel method vol.124, pp.5, 2018, https://doi.org/10.1007/s00339-018-1796-x