Browse > Article
http://dx.doi.org/10.4313/TEEM.2011.12.1.11

Luminescence Characteristics of ZnGa2O4:Mn2+,Cr3+ Phosphor and Thick Film  

Cha, Jae-Hyeok (Department of Electrical Engineering, Kyungwon University)
Choi, Hyung-Wook (Department of Electrical Engineering, Kyungwon University)
Publication Information
Transactions on Electrical and Electronic Materials / v.12, no.1, 2011 , pp. 11-15 More about this Journal
Abstract
In this study, $ZnGa_2O_4$ phosphors in its application to field emission displays and electroluminescence were synthesized through the precipitation method and $Mn^{2+}$ ions. A green luminescence activator, $Cr^{3+}$ ions, and a red luminescence activator were separately doped into $ZnGa_2O_4$, which was then screen printed to an indium tin oxide substrate. The thick films of the $ZnGa_2O_4$ were deposited with the various thicknesses using nano-sized powder. The best luminescence characteristics were shown at a thickness of 60 ${\mu}m$. Additionally, green-emission $ZnGa_2O_4:Mn^{2+}$ and red-emission $ZnGa_2O_4:Cr^{3+}$ phosphor thick films, which have superior characteristics, were manufactured through the screen-printing method. These results indicate that $ZnGa_2O_4$ phosphors prepared through the precipitation method have wide application as phosphor of the full color emission.
Keywords
Cathodeluminescence; Screen printing; Phosphor; $ZnGa_2O_4$; Activator;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 J. S. Kim, H. I. Kang, W. N. Kim, J. I. Kim, J. C. Choi, H. L. Park, G. C. Kim, T. W. Kim, Y. H. Hwang, S. I. Mho, M. C. Jung, and M. Han, Appl. Phys. Lett. 82, 2029 (2003) [DOI: 10.1063/1.1564632].   DOI   ScienceOn
2 J. S. Kim, H. L. Park, G. C. Kim, T. W. Kim, Y. H. Hwang, H. K. Kim, S. I. Mho, and S. D. Han, Solid State Commun. 126, 515 (2003) [DOI: 10.1016/s0038-1098(03)00238-2].   DOI
3 P. D. Rack, J. J. Peterson, M. D. Potter, and W. Park, J. Mater. Res. 16, 1429 (2001) [DOI: 10.1557/JMR.2001.0199].   DOI   ScienceOn
4 K. E. Sickafus, J. M. Wills, and N. W. Grimes, J. Am. Ceram. Soc. 82, 3279 (1999) [DOI: 10.1111/j.1151-2916.1999.tb02241.x].   DOI   ScienceOn
5 J. H. Lee, H. J. Park, K. Yoo, B. W. Kim, J. C. Lee, and S. Park, J. Eur. Ceram. Soc. 27, 965 (2007) [DOI: 10.1016/j.jeurceramsoc.2006.04.153].   DOI   ScienceOn
6 A. Vecht, C. Gibbons, D. Davies, X. Jing, P. Marsh, T. Ireland, J. Silver, A. Newport, and D. Barber, J. Vac. Sci. Technol. B 17, 750 (1999) [DOI: 10.1116/1.590633].   DOI   ScienceOn
7 M. Yu, J. Lin, Y. H. Zhou, and S. B. Wang, Mater. Lett. 56, 1007 (2002) [DOI: 10.1016/s0167-577x(02)00664-x].   DOI
8 T. Omata, N. Ueda, K. Ueda, and H. Kawazoe, Appl. Phys. Lett. 64, 1077 (1994) [DOI: 10.1063/1.110937].   DOI   ScienceOn
9 B. Qiao, Z. L. Tang, Z. T. Zhang, and L. Chen, Mater. Lett. 61, 401 (2007) [DOI: 10.1016/j.matlet.2006.04.070].   DOI   ScienceOn
10 Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, V. Fernicola, and L. Crovini, Phys. Rev. B 51, 2656 (1995) [DOI: 10.1103/Phys-RevB.51.2656].   DOI