• Title/Summary/Keyword: InGaN/GaN

Search Result 1,807, Processing Time 0.043 seconds

Gate Field Alleviation by graded gate-doping in Normally-off p-GaN/AlGaN/GaN Hetrojunction FETs (상시불통형 p-GaN/AlGaN/GaN 이종접합 트랜지스터의 게이트막 농도 계조화 효과)

  • Cho, Seong-In;Kim, Hyungtak
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1167-1171
    • /
    • 2020
  • In this work, we proposed a graded gate-doping structure to alleviate an electric field in p-GaN gate layer in order to improve the reliability of normally-off GaN power devices. In a TCAD simulation by Silvaco Atlas, a distribution of the graded p-type doping concentration was optimized to have a threshold voltage and an output current characteristics as same as the reference device with a uniform p-type gate doping. The reduction of an maximum electric field in p-GaN gate layer was observed and it suggests that the gate reliability of p-GaN gate HFETs can be improved.

Bottom photonic crystals-dependent photoluminescence of InGaN/GaN Quantum-Well Blue LEDs (하부 광결정에 따른 InGaN/GaN 양자우물구조의 청색발광 다이오드 발광 특성)

  • Cho, Sung-Nam;Choi, Jae-Ho;Kim, Keun-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.52-54
    • /
    • 2008
  • The authors investigated the InGaN/GaN multi-quantum well blue light emitting diodes with the implements of the photonic crystals fabricated at the top surface of p-GaN layer or the bottom interface of n-GaN layer. The top photonic crystals result in the lattice-dependent photoluminescence spectra for the blue light emitting diodes, which have a wavelength of 450nm. However, the bottom photonic crystal shows a big shift of the photoluminescence peak from 444 nm to 504 nm and played as a role of quality enhancement for the crystal growth of GaN thin film. The micro-Raman spectroscopy shows the improved epitaxial quality of GaN thin film.

  • PDF

Characteristics of Graphene Quantum Dot-Based Oxide Substrate for InGaN/GaN Micro-LED Structure (InGaN/GaN Micro-LED구조를 위한 그래핀 양자점 기반의 산화막 기판 특성)

  • Hwang, Sung Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.167-171
    • /
    • 2021
  • The core-shell InGaN/GaN Multi Quantum Well-Nanowires (MQW-NWs) that were selectively grown on oxide templates with perfectly circular hole patterns were highly crystalline and were shaped as high-aspect-ratio pyramids with semi-polar facets, indicating hexagonal symmetry. The formation of the InGaN active layer was characterized at its various locations for two types of the substrates, one containing defect-free MQW-NWs with GQDs and the other containing MQW-NWs with defects by using HRTEM. The TEM of the defect-free NW showed a typical diode behavior, much larger than that of the NW with defects, resulting in stronger EL from the former device, which holds promise for the realization of high-performance nonpolar core-shell InGaN/GaN MQW-NW substrates. These results suggest that well-defined nonpolar InGaN/GaN MQW-NWs can be utilized for the realization of high-performance LEDs.

Characteristics of Al/$BaTa_2O_6$/GaN MIS structure (Al/$BaTa_2O_6$/GaN MIS 구조의 특성)

  • Kim, Dong-Sik
    • 전자공학회논문지 IE
    • /
    • v.43 no.2
    • /
    • pp.7-10
    • /
    • 2006
  • A GaN-based metal-insulator-semiconductor (MIS) structure has been fabricated by using $BaTa_2O_6$ instead of conventional oxide as insulator gate. The leakage current o) films are in order of $10^{-12}-10^{-13}A/cm^2$ for GaN on $Al_2O_3$(0001) substrate and in order of $10^{-6}-10^{-7}A/cm^2$ for GaN on GaAs(001) substrate. The leakage current of thses films is governed by space-charge-limited current over 45 MV/cm in case of GaN on $Al_2O_3$(0001) substrate and by Poole-Frenkel emission in case of GaN on GaAs(001).

Characterization of In(Al)GaN layer grown by mixed-source hydride vapor phase epitaxy (혼합소스 HVPE에 의해 성장된 In(Al)GaN 층의 특성)

  • Hwang, S.L.;Kim, K.H.;Jang, K.S.;Jeon, H.S.;Choi, W.J.;Chang, J.H.;Kim, H.S.;Yang, M.;Ahn, H.S.;Bae, J.S.;Kim, S.W.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.4
    • /
    • pp.157-161
    • /
    • 2006
  • InGaN layers on GaN templated sapphire (0001) substrates were grown by mixed-source hydride vapor phase epitaxy (HVPE) method. In order to get InGaN layers, Ga-mixed In metal and $NH_3$ gas were used as group III and group V source materials, respectively. The InGaN material was compounded from chemical reaction between $NH_3$ and indium-gallium chloride farmed by HCl flowed over metallic In mixed with Ga. The grown layers were confirmed to be InGaN ternary crystal alloys by X-ray photoelectron spectroscopy (XPS). In concentration of the InGaN layers grown by selective area growth (SAG) method was investigated by the photoluminescence (PL) and cathodoluminescence (CL) measurements. Indium concentration was estimated to be in the range 3 %. Moreover, as a new attempt in obtaining InAlGaN layers, the growth of the thick InAlGaN layers was performed by putting small amount of Ga and Al into the In source. We found the new results that the metallic In mixed with Ga (and Al) as a group III source material could be used in the growth process of the In(Al)GaN layers by the mixed-source HVPE method.

NO2 gas sensor using an AlGaN/GaN Heterostructure FET with SnO2 catalyst deposited by ALD technique (원자막증착법(ALD) SnO2 촉매를 적용한 AlGaN/GaN 이종접합 트랜지스터 NO2 가스센서)

  • Yang, Suhyuk;Kim, Hyungtak
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1117-1121
    • /
    • 2020
  • In this work, it was confirmed that a SnO2 catalyst deposited by an atomic layer deposition(ALD) process can be employed in AlGaN/GaN heterostructure FET to detect NO2 gas. The fabricated HFET sensors on AlGaN/GaN-on-Si platform demonstrated that the devices with or without n-situ SiN have sensitivity of 5.5 % and 38 % at 200 ℃, respectively with response to 100 ppm-NO2.

The effect of the processing parameters on the growth of GaN thick films by a sublimation technique (승화법에 의한 GaN 후막성장시 공정변수의 영향)

  • 노정현;박용주;이태경;심광보
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.5
    • /
    • pp.235-240
    • /
    • 2003
  • The development of large area GaN substrates is one of important issues in expanding of GaN-based applications. In order to investigate the possibility, GaN thick films were grown by a sublimation technique, using MOCVD-GaN films grown on a sapphire as a seed-crystal substrate and a commercial GaN powder as a source material. The pressure in chamber under the fixed flow rate of $N_2$ gas and $NH_3$ gas was kept at 1 atmosphere and the effects of the various processing parameters such as the distance between source material and seed crystal, the temperature of top- and bottom heater and the growth time during the growth of GaN thick film were investigated. The growth feature and microstructure of the GaN thick films were observed by SEM and XRD. The optical bandgap properties and the defects were evaluated by the PL measurement. By these results, the growth conditions such as the distance between the GaN source and the seed substrate, the growth temperature and the growth time were determined for the satisfied growth of GaN thick films.

The growth and defects of GaN film by hydride vapor phase epitaxy (HVPE GaN film의 성장과 결함)

  • 이성국;박성수;한재용
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.168-172
    • /
    • 1999
  • The 9 $\mu\textrm{m}$ GaN films on sapphire substrate were grown by Hydride vapor phase epitaxy. Dislocation density of these GaN films was measured by TEM. GaN film with crack free and mirror surface was directly grown on sapphire substrate. The dislocation density of this GaN film was $2{\times}10^9/cm^2$. The surface of GaN film on patterned GaN layer also presented a smooth mirror. But a part of GaN surface included holes because of incomplete coalescence. The dislocation density of GaN film above the mask region was lower than that in the window region. Especially, the dislocation density in the region between mask center and window region was close to dislocation free. The average dislocation density of ELO GaN was $8{\times}10^7/cm^2$.

  • PDF

Characteristic analysis of GaN-based Light Emitting Diode(LED) (GaN 기반 발광 다이오드(LED)의 특성 분석)

  • Lee, Jae-Hyun;Yeom, Kee-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.686-689
    • /
    • 2012
  • In this paper, the GaN-based LED characteristics are analyzed using ISE-TCAD. The LED consists of GaN barriers, active region of InGaN quantum well, AlGaN EBL(Electron Blocking Layer) and AlGaN HBL(Hole Blocking Layer) on GaN buffer layer. The output power characteristics of LED considering Auger recombination rate, thickness of quantum well and number of quantum wells are analyzed and some criteria for the design of LED are proposed.

  • PDF

Strong Carrier Localization and Diminished Quantum-confined Stark Effect in Ultra-thin High-Indium-content InGaN Quantum Wells with Violet Light Emission

  • Ko, Suk-Min;Kwack, Ho-Sang;Park, Chunghyun;Yoo, Yang-Seok;Yoon, Euijoon;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.293-293
    • /
    • 2014
  • Over last decade InGaN alloy structures have become the one of the most promising materials among the numerous compound semiconductors for high efficiency light sources because of their direct band-gap and a wide spectral region (ultraviolet to infrared). The primary cause for the high quantum efficiency of the InGaN alloy in spite of high threading dislocation density caused by lattice misfit between GaN and sapphire substrate and severe built-in electric field of a few MV/cm due to the spontaneous and piezoelectric polarizations is generally known as the strong exciton localization trapped by lattice-parameter-scale In-N clusters in the random InGaN alloy. Nonetheless, violet-emitting (390 nm) conventional low-In-content InGaN/GaN multi-quantum wells (MQWs) show the degradation in internal quantum efficiency compared to blue-emitting (450 nm) MQWs owing higher In-content due to the less localization of carrier and the smaller band offset. We expected that an improvement of internal quantum efficiency in the violet region can be achieved by replacing the conventional low-In-content InGaN/GaN MQWs with ultra-thin, high-In-content (UTHI) InGaN/GaN MQWs because of better localization of carriers and smaller quantum-confined Stark effect (QCSE). We successfully obtain the UTHI InGaN/GaN MQWs grown via employing the GI technique by using the metal-organic chemical vapor deposition. In this work, 1 the optical and structural properties of the violet-light-emitting UTHI InGaN/GaN MQWs grown by employing the GI technique in comparison with conventional low-In-content InGaN/GaN MQWs were investigated. Stronger localization of carriers and smaller QCSE were observed in UTHI MQWs as a result of enlarged potential fluctuation and thinner QW thickness compared to those in conventional low-In-content MQWs. We hope that these strong carrier localization and reduced QCSE can turn the UTHI InGaN/GaN MQWs into an attractive candidate for high efficient violet emitter. Detailed structural and optical characteristics of UTHI InGaN/GaN MQWs compared to the conventional InGaN/GaN MQWs will be given.

  • PDF