• Title/Summary/Keyword: InGaAs/InAlAs

Search Result 720, Processing Time 0.032 seconds

Photoluminescence of Y3(Al, Ga)5O12:Ce3+ Nanoparticles by a Reverse Micelle Process

  • Kim, Min Yeong;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.31-34
    • /
    • 2013
  • Trivalent cerium-ion-doped $Y_3(Al,\;Ga)_5O_{12}$ nanoparticle phosphor nanoparticles were synthesized using the reverse micelle process. The Ce doped $Y_3(Al,\;Ga)_5O_{12}$ particles were obtained from nitrate solutions dispersed in the nanosized aqueous domains of a micro emulsion consisting of cyclohexane as the oil phase and poly(oxyethylene) nonylphenyl ether (Igepal CO-520) as the non-ionic surfactant. The crystallinity, morphology, and thermal properties of the synthesized $Y_3(Al,\;Ga)_5O_{12}:Ce^{3+}$ powders were characterized by thermogravimetry-differential thermal analysis (TGA-DTA), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and transmission electron microscopy. The crystallinity, morphology, and chemical states of the ions were characterized; the photo-physical properties were studied by taking absorption, excitation, and emission spectra for various concentrations of cerium. The photo physical properties of the synthesized $Y_3(Al,\;Ga)_5O_{12}:Ce^{3+}$ powders were studied by taking the excitation and emission spectra for various concentrations of cerium. The average particle size of the synthesized YAG powders was below $1{\mu}m$. Excitation spectra of the $Y_3Al_5O_{12}$ and $Y_3Al_{3.97}Ga_{1.03}O_{12}$ samples were 485 nm and 475 nm, respectively. The emission spectra of the $Y_3Al_5O_{12}$ and $Y_3Al_{3.97}Ga_{1.03}O_{12}$ were around 560 nm and 545 nm, respectively. $Y_3(Al,\;Ga)_5O_{12}:Ce^{3+}$ is a red-emitting phosphor; it has a high efficiency for operation under near UV excitation, and may be a promising candidate for photonic applications.

Electron Distribution in the GaAs-AlxGa1-x Quantum Well with the Si δ-doping Layer in a Non-central Position under the External Electric Field (비 중심 Si δ-doping 층을 갖는 GaAs-AlxGa1-x 양자우물에서 전계에 따른 전자 분포)

  • Choi, Jun-Young;Chun, Sang-Kook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.14-18
    • /
    • 2007
  • The electric property in the $GaAs-Al_{x}Ga_{1-x}$ quantum well with the Si ${\delta}-doping$ layer in a non-central position is studied through the effect of the electric field intensity on the electron distribution. The finite difference method is used for the calculation of the subband energy level and its wavefunction. In order to account for the change of the potential energy due to the charged particles, the self consistent method is employed. As the Si ${\delta}-doping$ layer becomes closer to the heterojunction interface, the electrons less affected by Coulomb scattering are greatly increased under the external electric field. Therefore, the high speed device is suggested due to the fact that the high mobility electrons can be increased by positioning the ${\delta}-doping$ layer in the quantum well and by applying the electric field intensity.

Optimization of InAlAs/InGaAs HEMT Performance for Microwave Frequency Applications and Reliability

  • Gupta, Ritesh;Aggarwal, Sandeep Kumar;Gupta, Mridula;Gupta, R.S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.3
    • /
    • pp.240-249
    • /
    • 2004
  • In the present paper efforts have been made to optimize InAlAs/InGaAs HEMT by enhancing the effective gate voltage ($(V_c-V_off)$) using pulsed doped structure from uniformly doped to delta doped for microwave frequency applications and reliability. The detailed design criteria to select the proper design parameters have also been discussed in detail to exclude parallel conduction without affecting the del ice performance. Then the optimized value of $V_c-V_off$and breakdown voltages corresponding to maximum value of transconductance has been obtained. These values are then used to predict the transconductance and cut-off frequency of the del ice for different channel depths and gate lengths.

Molecular Beam Epitaxy of InAs/AlSb HFET's on Si and GaAs Substrates

  • Oh, Jae-Eung;Kim, Mun-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.3
    • /
    • pp.131-135
    • /
    • 2006
  • High electron mobility transistors with InAs channels and antimonide barriers were grown on Si and GaAs substrates by means of molecular beam epitaxy. While direct growth of Sb materials on Si substrate generates disordered and coalescences 3-D growth, smooth and mirror-like 2D growth can be repeatedly obtained by inserting AlSb QD layers between them. Room-temperature electron mobilities of over 10,000 $cm^2/V-s$ and 20,000 $cm^2/v-s$ can be routinely obtained on Si and GaAs substrates, respectively, after optimizing the buffer structure as well as maintaining InSb-like interface.

Improving The Breakdown Characteristics of AlGaN/GaN HEMT by Optimizing The Gate Field Plate Structure (게이트 필드플레이트 구조 최적화를 통한 AlGaN/GaN HEMT 의 항복전압 특성 향상)

  • Son, Sung-Hun;Kim, Tae-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.5
    • /
    • pp.1-5
    • /
    • 2011
  • In this paper, we optimize the gate field plate structure to improve breakdown characteristics of AlGaN/GaN HEMT by two-dimensional device simulator. We have simulated using three parameters such as field-plate length, types of insulator, and insulator thickness and thereby we checked change of the electric field distribution and breakdown voltage characteristics. As optimizing field-plate structure, electric fields concentrated near the gate edge and field-plate edge are effectively dispersed. Therefore, avalanche effect is decresed, so breakdown voltage characteristic is increased. As a result breakdown characteristics of optimized gate field-plate structure are increased by about 300% compared to those of the standard structure.

Enhancement in the light extraction efficiency of 405 nm light-emitting diodes by adoption of a Ti-Al reflection layer (Ti-Al 반사막을 이용한 405 nm LED의 광추출 효율 향상)

  • Kim, C.Y.;Kwon, S.R.;Lee, D.H.;Noh, S.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.211-214
    • /
    • 2008
  • GaN-based light-emitting diodes (LEDs) of a 405 nm wavelength have been fabricated on a sapphire substrate by metal organic chemical vapor deposition (MOCVD). In order to reflect the photons, which are generated in the InGaN active region and emitted to the backside, to the front surface, a reflection layer was deposited onto the back of the substrate. Aluminum was used as the reflection layer and Al was deposited on the sample followed by Ti evaporation for firm adhesion of the reflection layer to the substrate. The light extraction efficiency was enhanced 52 % by adoption of the Ti-Al reflection layer.

Optimization of charge and multiplication layers of 20-Gbps InGaAs/InAlAs avalanche photodiode

  • Sim, Jae-Sik;Kim, Kisoo;Song, Minje;Kim, Sungil;Song, Minhyup
    • ETRI Journal
    • /
    • v.43 no.5
    • /
    • pp.916-922
    • /
    • 2021
  • We calculated the correlation between the doping concentration of the charge layer and the multiplication layer for separate absorption, grading, charge, and multiplication InGaAs/InAlAs avalanche photodiodes (APDs). For this purpose, a predictable program was developed according to the concentration and thickness of the charge layer and the multiplication layer. We also optimized the design, fabrication, and characteristics of an APD for 20 Gbps application. The punch-through voltage and breakdown voltage of the fabricated device were 10 V and 33 V, respectively, and it was confirmed that these almost matched the designed values. The 3-dB bandwidth of the APD was 10.4 GHz, and the bit rate was approximately 20.8 Gbps.

Effects of GaAsAl Laser on the Pressure Pain Threshold in Rats (GaAsAl 레이저 자극이 흰쥐의 압통역치에 미치는 영향)

  • Song, Young-Wha;Lee, Young-Gu;Lim, Jong-Soo
    • Journal of Korean Physical Therapy Science
    • /
    • v.7 no.2
    • /
    • pp.533-543
    • /
    • 2000
  • This study was designed to evaluate the analgesic effect of low power GaAsAl laser on the pain threshold of mechanical stimulation using different treatment points, acupuncture point (zusanli) and non-acupuncture points(back). Furthermore, we investigated the analgesic effect of low power GaAsAl laser using the different duration and intensity of laser in mechanical stimulation induced pain behavior. The results were summarized as follows: 1. The threshold of mechanical stimulation was significantly increased by GaAsAl laser stimulation into zusanli point after 15 and 30 min after laser stimulation(P<05). However, the laser stimulation into non-acupoint did not affect the pain threshold of mechanical stimulation. with dose dependent manner. 2. In order to investigate the analgesic effects of BV depending upon different intensities of laser stimulation, the experimental animals were divided into three groups: 3 mW treated group, 6 mW treated group and 10 mW treated group. The low power GaAsAl laser stimulation was applied into zusanli acupoint for 30 min with different intensity of laser stimulation. Six and ten mW of laser stimulation significantly increased the pain threshold of mechanical stimulation at 15 min after laser stimulation as compared to that of control group(P<.05). Moreover, the analgesic effect of 10 mW laser stimulation was maintained for 30 min after laser stimulation (P<.05). 3. Finally, we tested the analgesic effect of 10 mW laser stimulation using different duration such as 10 min, 30 min or 1 hr after application of mechanical stimulation. In 30 min treatment group, the pain threshold of mechanical stimulation was increased at 15min and 30min after laser stimulation(P<.05). However, laser stimulation for 60 min dramatically increased the pain threshold of mechanical stimulation at 0 min after laser stimulation and the analgesic effect of laser stimulation was observed until 1 hr after laser stimulation. In conclusion, these data apparently demonstrate that low power GaAsAl laser has analgesic effect on mechanical induced pain model in rats. In addition, the treated point, intensity and duration of laser stimulation should be concerned before clinical application for pain management purpose.

  • PDF

Asymmetric Metal-Semiconductor-Metal Al0.24Ga0.76N UV Sensors with Surface Passivation Effect Under Local Joule Heating

  • Byeong-Jun Park;Sung-Ho Hahm
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.425-431
    • /
    • 2023
  • An asymmetric metal-semiconductor-metal Al0.24Ga0.76N ultraviolet (UV) sensor was fabricated, and the effects of local Joule heating were investigated. After dielectric breakdown, the current density under a reverse bias of 2.0 V was 1.1×10-9 A/cm2, significantly lower than 1.2×10-8 A/cm2 before dielectric breakdown; moreover, the Schottky behavior of the Ti/Al/Ni/Au electrode changed to ohmic behavior under forward bias. The UV-to-visible rejection ratio (UVRR) under a reverse bias of 7.0 V before dielectric breakdown was 87; however, this UVRR significantly increased to 578, in addition to providing highly reliable responsivity. Transmission electron microscopy revealed interdiffusion between adjacent layers, with nitrogen vacancies possibly formed owing to local Joule heating at the AlGaN/Ti/Al/Ni/Au interfaces. X-ray photoelectron microscopy results revealed decreases in the peak intensities of the O 1s binding energies associated with the Ga-O bond and OH-, which act as electron-trapping states on the AlGaN surface. The reduction in dark current owing to the proposed local heating method is expected to increase the sensing performance of UV optoelectronic integrated devices, such as active-pixel UV image sensors.