• Title/Summary/Keyword: Imidazolate

Search Result 29, Processing Time 0.024 seconds

Acetone Sensing Characteristics of ZnO Nanoparticles Prepared from Zeolitic Imidazolate Framework-7 (Zeolitic Imidazolate Framework-7로 합성한 ZnO 나노입자의 Acetone 가스 감응 특성)

  • Yoon, Ji Won;Wang, Rui;Park, Joon-Shik;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.204-208
    • /
    • 2017
  • Highly uniform and well-dispersed Zeolitic Imidazolate Framework-7 (ZIF-7) particles were prepared by the precipitation of $Zn^{2+}$ using benzimidazole, which were converted into ZnO nanoparticles by heat treatment at $500^{\circ}C$ for 24 h. The ZIF-7 derived ZnO nanoparticles showed abundant mesopores, high surface area, and good dispersion. The gas sensing characteristics toward 5 ppm acetone, ethanol, trimethylamine, ammonia, p-xylene, toluene, benzene, and carbon monoxide and carbon dioxide were investigated at $350-450^{\circ}C$. ZIF-7 derived ZnO nanoparticles exhibited high response to 5 ppm acetone ($R_a/R_g=57.6$; $R_a$: resistance under exposure to the air, Rg: resistance under exposure to the gas) at $450^{\circ}C$ and negligible cross-responses to other interference gases (trimethylamine, ammonia, p-xylene, toluene, benzene, carbon monoxide, carbon dioxide) and relatively low responses to ethanol. ZIF derived synthesis of metal oxide nanoparticles can be used to design high performance acetone sensors.

Bimetallic Zeolitic Imidazolate Framework Derived Co3O4/CoFe2O4 Catalyst Loaded In2O3 Nanofibers for Highly Sensitive and Selective Ethanol Sensing (금속-유기 골격체 열분해를 통해 합성된 Co3O4/CoFe2O4 첨가 In2O3나노섬유를 이용한 고감도 고선택성 에탄올 센서)

  • Lee, Soo-Min;Kim, Tae-Hyun;Jo, Young-Moo;Kim, Ki Beom;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.94-98
    • /
    • 2021
  • In this study, pure and Co3O4/CoFe2O4-loaded Indium oxide (In2O3) nanofibers were synthesized by the electrospinning of an Indium/Polyvinylpyrrolidone precursor solution containing cobalt and iron bimetallic zeolitic imidazolate frameworks and subsequent heat treatment. The ethanol, toluene, p-xylene, benzene, carbon monodxide, and hydrogen gas sensing characteristics of the solution were measured at 250-400 ℃. 0.5 at%-Co3O4/CoFe2O4-loaded In2O3 nanofibers exhibited extreme response (resistance ratio - 1) to 5 ppm of ethanol (210.5) at 250 ℃ and excellent selectivity over the interfering gases. In contrast, pure In2O3 nanofibers exhibited relatively low responses to all the analyte gases and low selectivity above 250-400 ℃. The superior response and selectivity toward ethanol is explained by the catalytic roles of Co3O4 and CoFe2O4 in gas sensing reaction and the electronic sensitization induced by the formation of p (Co3O4/CoFe2O4)-n (In2O3) junctions.

Microwave-Syntheses of Zeolitic Imidazolate Framework Material, ZIF-8 (마이크로파에 의한 Zeolitic Imidazolate Framework 물질, ZIF-8의 합성)

  • Park, Jung-Hwa;Park, Seon-Hye;Jhung, Sung-Hwa
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.5
    • /
    • pp.553-559
    • /
    • 2009
  • One of zeolitic imidazolate framework materials (ZIF), ZIF-8, has been synthesized with microwave irradiation and conventional electric heating at $140{\sim}180^{\circ}C}$. ZIFs are porous crystalline materials and are similar to metal organic framework (MOF) materials because both ZIFs and MOFs are composed of both organic and metallic components. ZIFs are very stable and similar to zeolites because ZIFs have tetrahedral networks. ZIF-8, with a decreased crystal size, can be synthesized rapidly with microwave irradiation. The microwave synthesis of ZIF-8 is completed in 4 h at $140{^{\circ}C}$ and the reaction time is decreased by about 5 times compared with the conventional electric heating. The ZIF-8 obtained by microwave heating has larger surface area and micropore volume compared with the ZIF-8 synthesized with conventional electric heating. It can be confirmed that ZIF-8s show type-I adsorption isotherms, explaining the microporosity of the ZIF-8s. Based on FTIR and TGA results, it can be understood that the ZIF-8s have similar bonding and thermal characteristics irrespective of heating methods such as microwave and conventional heating.

Effect of Zeolitic Imidazolate Framework-7 in Pebax Mixed Matrix Membrane for CO2/N2 Separation (CO2/N2 분리를 위한 Pebax 혼합막에서 Zeolitic Imidazolate Framework-7의 영향)

  • Yoon, Soong Seok;Hong, Se Ryeong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.393-402
    • /
    • 2021
  • In this study, a mixed matrix membrane was prepared by putting the zeolitic imidazolate framework-7 (ZIF-7) synthesized in Pebax-1657 and Pebax-2533, which are representative poly(ether-b-amide), and the permeability properties of single gas such as N2 and CO2 were investigated. From the gas permeation results, in the case of N2, both the Pebax-1657/ZIF-7 and Pebax-2533/ZIF-7 mixed matrix membranes showed a similar phenomenon in which the permeability decreased with the incorporation of ZIF-7. For CO2 permeability, the tendency was slightly different depending on the type of polymer. In the Pebax-1657/ZIF-7 mixed membrane, the CO2 permeability decreased in the range of 0~3 wt% of ZIF-7, and increased at higher contents. The CO2 permeability of the Pebax-2533/ZIF-7 mixed matrix membrane gradually decreased without increasing the permeability in the range of 0~5 wt% of ZIF-7. Regarding CO2/N2 selectivity, both mixed films showed a tendency to increase with increasing the ZIF-7 content. In particular, Pebax-2533/ZIF-7 5 wt% showed the best gas permeation performance compared to other mixed matrix membrane. This is thought to be because ZIF-7 shows better compatibility with Pebax-2533 than that of Pebax-1657 and also better CO2 selective property.

Preparation of Crack-free ZIF-7 Thin Films by Electrospray Deposition (정전분무법에 의한 결함없는 ZIF-7 박막의 제조)

  • Melgar, Victor Manuel Aceituno;Kim, Jinsoo
    • Membrane Journal
    • /
    • v.23 no.4
    • /
    • pp.278-282
    • /
    • 2013
  • Zeolitic imidazolate frameworks (ZIFs) have been the focus of interest for their physical and chemical properties, especially, for their extraordinary gas separation properties. In this study, a novel and efficient method for the fabrication of continuous ZIF-7 film on ${\alpha}$-alumina substrate has been investigated. The electrospray deposition method was tried for the first time to prepare ZIF films directly without the necessity of prior substrate seeding. It has the advantage of depositing thin ZIF-7 films directly on the ${\alpha}$-alumina substrate by electrospraying the precursor solution. The ZIF-7 films have been characterized through XRD, FE-SEM, and single gas permeation tests.

Implementation of magnetic Fe3O4@ZIF-8 nanocomposite to activate sodium percarbonate for highly effective degradation of organic compound in aqueous solution

  • Sajjadi, Saeed;Khataee, Alireza;Soltani, Reza Darvishi Cheshmeh;Bagheri, Nafiseh;Karimi, Afzal;Azar, Amirali Ebadi Fard
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.406-415
    • /
    • 2018
  • Here, as-synthesized $Fe_3O_4$ nanoparticles were incorporated into the zeolitic imidazolate framework (ZIF-8) lattice to activate sodium percarbonate (SPC) for degradation of methylene blue (MB). The reaction rate constant of $Fe_3O_4@ZIF-8/SPC$ process ($0.0632min^{-1}$) at acidic conditions (pH = 3) was more than six times that of the $Fe_3O_4/SPC$ system ($0.009min^{-1}$). Decreasing the solute concentration, along with increasing SPC concentration and $Fe_3O_4@ZIF-8$ nanocomposite (NC) dosage, favored the catalytic degradation of MB. The $Fe_3O_4@ZIF-8$ NC after fifteen consecutive treatment processes showed the excellent stability with a negligible drop in the efficiency of the system (<10%). The reaction pathway was obtained via GC-MS analysis.

CO2 Adsorption in Metal-organic Frameworks (금속유기구조체를 이용한 이산화탄소 흡착 연구)

  • Kim, Jun;Kim, Hee-Young;Ahn, Wha-Seung
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.171-180
    • /
    • 2013
  • Metal organic frameworks (MOFs) are a class of crystalline organic-inorganic hybrid compounds formed by coordination of metal clusters or ions with organic linkers. MOFs have recently attracted intense research interest due to their permanent porous structures, large surface areas and pore volume, high-dispersed metal species, and potential applications in gas adsorption, separation, and catalysis. $CO_2$ adsorption in MOFs has been investigated in two areas of $CO_2$ storage at high pressures and $CO_2$ adsorption at atmospheric pressure conditions. In this short review, $CO_2$ adsorption/separation results using MOFs conducted in our laboratory was explained in terms of four contributing effects; (1) coordinatively unsaturated open metal sites, (2) functionalization, (3) interpenetration/catenation, and (4) ion-exchange. Zeolitic imidazolate frameworks (ZIFs) and covalent organic frameworks (COFs) were also considered as a candidate material.

Bimetallic Co/Zn-ZIF as an Efficient Photocatalyst for Degradation of Indigo Carmine

  • Nguyen, Thanh Nhan;Nguyen, Hoang Phuc;Kim, Tae-Ho;Lee, Soo Wohn
    • Korean Journal of Materials Research
    • /
    • v.28 no.1
    • /
    • pp.68-74
    • /
    • 2018
  • Cobalt-incorporated zeolitic imidazolate framework ZIF-8 was synthesized by a simple one-pot synthesis method at room temperature. Powder X-ray diffraction patterns and energy dispersive X-ray spectrum confirmed the formation of the bimetallic Co/Zn-ZIF structure. UV-Vis diffuse reflectance spectra revealed that the bimetallic ZIF had a lower HOMO-LUMO gap compared with ZIF-8 due to the charge transfer process from organic ligands to cobalt centers. A hydrolytic stability test showed that Co/Zn-ZIF is very robust in aqueous solution - the most important criterion for any material to be applied in photodegradation. The photocatalytic efficiency of the synthesized samples was investigated over the Indigo Carmine (IC) dye degradation under solar simulated irradiation. Cobalt incorporated ZIF-8 exhibited high efficiency over a wide range of pH and initial concentration. The degradation followed through three distinct stages: a slow initial stage, followed by an accelerated stage and completed with a decelerated stage. Moreover, the photocatalytic performance of the synthesized samples was highly improved in alkaline environment rather than in acidic or neutral environments, which may have been because in high pH medium, the increased concentration of hydroxyl ion facilitated the formation of hydroxyl radicals, a reactive species responsible for the breaking of the Indigo Carmine structure. Thus, Co/Zn-ZIF is a promising and green material for solving the environmental pollution caused by textile industries.

Gas Permeation Characteristics of Propylene/Propane in PEBAX-ZIF Composite Membranes (PEBAX-ZIF 복합막에 의한 Propylene/Propane의 기체투과 특성)

  • Kim, Seul Ki;Hong, Se Ryeong
    • Membrane Journal
    • /
    • v.24 no.4
    • /
    • pp.259-267
    • /
    • 2014
  • PEBAX[poly(ether-block-amide)-ZIF-8(zeolitic imidazolate framework) composite membranes were prepared with different amounts of ZIF-8; 0, 1, 3, 7, 10, and 20 wt%. Gas permeation experiment were performed by varying the temperature of 25, 35, $40^{\circ}C$ under condition $6kgf/cm^2$. Gas permeability of $C_3H_6$, $C_3H_8$ and selectivity ($C_3H_6/C_3H_8$) were investigated by increasing the amount of ZIF-8 in the PEBAX. The gas permeability of $C_3H_6$ and $C_3H_8$ increased as ZIF-8 content increased among 0 to 7 wt% range and decreased among 7 to 20 wt% range. When the ZIF contents of PEBAX-ZIF composite membrane were 7 wt%, the selectivity ($C_3H_6/C_3H_8$) was taken between 3.6 and 3.8 value and also had the lowest activation energy.