Browse > Article
http://dx.doi.org/10.14478/ace.2021.1042

Effect of Zeolitic Imidazolate Framework-7 in Pebax Mixed Matrix Membrane for CO2/N2 Separation  

Yoon, Soong Seok (Department of Chemical Engineering and Materials Science, Sangmyung University)
Hong, Se Ryeong (Kyedang College of General Educations, Sangmyung University)
Publication Information
Applied Chemistry for Engineering / v.32, no.4, 2021 , pp. 393-402 More about this Journal
Abstract
In this study, a mixed matrix membrane was prepared by putting the zeolitic imidazolate framework-7 (ZIF-7) synthesized in Pebax-1657 and Pebax-2533, which are representative poly(ether-b-amide), and the permeability properties of single gas such as N2 and CO2 were investigated. From the gas permeation results, in the case of N2, both the Pebax-1657/ZIF-7 and Pebax-2533/ZIF-7 mixed matrix membranes showed a similar phenomenon in which the permeability decreased with the incorporation of ZIF-7. For CO2 permeability, the tendency was slightly different depending on the type of polymer. In the Pebax-1657/ZIF-7 mixed membrane, the CO2 permeability decreased in the range of 0~3 wt% of ZIF-7, and increased at higher contents. The CO2 permeability of the Pebax-2533/ZIF-7 mixed matrix membrane gradually decreased without increasing the permeability in the range of 0~5 wt% of ZIF-7. Regarding CO2/N2 selectivity, both mixed films showed a tendency to increase with increasing the ZIF-7 content. In particular, Pebax-2533/ZIF-7 5 wt% showed the best gas permeation performance compared to other mixed matrix membrane. This is thought to be because ZIF-7 shows better compatibility with Pebax-2533 than that of Pebax-1657 and also better CO2 selective property.
Keywords
Pebax-1657; Pebax-2533; ZIF-7; $CO_2$ separation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. Meshkat, S. Kaliaguine, and D. Rodrigue, Comparison between ZIF-67 and ZIF-8 in Pebax® MH-1657 mixed matrix membranes for CO2 separation, Sep. Purif. Technol., 235, 116150 (2020).   DOI
2 Z. Dai, L. Bai, K. N. Hval, X. Zhang, S. Zhang, and L. Deng, Pebax®/TSIL blend thin film composite membranes for CO2 separation, Sci. China Chem., 59, 538-546 (2016).   DOI
3 R. Casadei, M. G. Baschetti, M. J. Yoo, H. B. Park, and L. Giorgini, Pebax® 2533/graphene oxide nanocomposite membranes for carbon capture, Membranes, 10, 188 (2020).   DOI
4 J. Gao, H. Mao, H. Jin, C. Chen, A. Feldhoff, and Y. Li, Functionalized ZIF-7/Pebax® 2533 mixed matrix membranes for CO2/N2 separation, Microporous Mesoporous Mater., 297, 110030 (2020).   DOI
5 P. Bernardo and G. Clarizia, Enhancing gas permeation properties of Pebax® 1657 membranes via polysorbate nonionic surfactants doping, Polymers, 12, 253 (2020).   DOI
6 H. B. Park, J. Kamcev, L. M. Robeson, M. Elimelech, and B. D. Freeman, Maximizing the right stuff: The trade-off between membrane permeability and selectivity, Science, 356, eaab0530 (2017).   DOI
7 M. Vinoba, M. Bhagiyalakshmi, Y. Alqaheem, A. A. Alomair, A. Perez, and M. S. Rana, Recent progress of fillers in mixed matrix membranes for CO2 separation: A review, Sep. Purif. Technol., 188, 431-450 (2017).   DOI
8 F. H. Akhtar, M. Kumar, and K. Peinemann, Pebax® 1657/Graphene oxide composite membranes for improved water vapor separation, J. Membr. Sci., 525, 187-194 (2017).   DOI
9 W. Fam, J. Mansouri, H. Li, and V. Chen, Improving CO2 separation performance of thin film composite hollow fiber with Pebax® 1657/ionic liquid gel membranes, J. Membr. Sci., 537, 54-68 (2017).   DOI
10 R. Selyanchyn, M. Ariyoshi, and S. Fujikawa, Thickness effect on CO2/N2 separation in double layer Pebax-1657®/PDMS membranes, Membranes, 8, 121 (2018).   DOI
11 L. Xiang, D. Liu, H. Jin, L. Xu, C. Wang, S. Xu, Y. Pan, and Y. Li, Locking of phase transition in MOF ZIF-7: Improved selectivity in mixed-matrix membranes for O2/N2 separation, Mater. Horiz., 7, 223-228 (2020).   DOI
12 K. Xie, Q. Fu, G. G. Qiao, and P. A. Webley, Recent progress on fabrication methods of polymeric thin film gas separation membranes for CO2 capture, J. Membr. Sci., 572, 38-60 (2019).   DOI
13 S. Jeong, H. Sohn, and S. W. Kang, Highly permeable PEBAX-1657 membranes to have long-term stability for facilitated olefin transport, Chem. Eng. J., 333, 276-279 (2018).   DOI
14 K. S. Park, Z. Ni, A. P. Cote, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe, and O. M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, PNAS, 103, 10186-10191 (2006).   DOI
15 C. Kang, Y. Lin, Y. Huang, K. Tung, K. Chang, J. Chen, W. Hung, K. Lee, and J. Lai, Synthesis of ZIF-7/chitosan mixed-matrix membranes with improved separation performance of water/ethanol mixtures, J. Membr. Sci., 438, 105-111 (2013).   DOI
16 X. Wu, M. N. Shahrak, B. Yuan, and S. Deng, Synthesis and characterization of zeolitic imidazolate framework ZIF-7 for CO2 and CH4 separation, Microporous Mesoporous Mater., 190, 189-196 (2014).   DOI
17 D. Zhao, J. Ren, Y. Wang, Y. Qiu, H. Li, K. Hua, X. Li, J. Ji, and M. Deng, High CO2 separation performance of Pebax®/CNTs/GTA mixed matrix membranes, J. Membr. Sci., 521, 104-113 (2017).   DOI
18 J. Deng, Z. Dai, and L. Deng, Effects of the morphology of the ZIF on the CO2 separation performance of MMMs, Ind. Eng. Chem. Res., 59, 14458-14466 (2020).   DOI
19 K. Knozowska, G. Li, W. Kujawski, and J. Kujawa, Novel heterogeneous membranes for enhanced separation in organic-organic pervaporation, J. Membr. Sci., 599, 117814 (2020).   DOI
20 S. Mosleh, G. Khanbabaei, M. Mozdianfard, and M. Hemmati, Application of poly(amide-b-ethylene oxide)/zeolitic imidazolate framework nanocomposite membrane in gas separation, Iran. Polym. J., 25, 977-990 (2016).   DOI
21 F. Pazani, A. Aroujalian, Enhanced CO2-selective behavior of Pebax-1657: A comparative study between the influence of graphene-based fillers, Polym. Test., 81, 106264 (2020).   DOI
22 M. Pazirofteh, M. Dehghani, S. Niazi, A. H. Mohammadi, and M. Asghari, Molecular dynamics simulation and Monte Carlo study of transport and structural properties of PEBA 1657 and 2533 membranes modified by functionalized POSS-PEG material, J. Mol. Liq., 241, 646-653 (2017).   DOI
23 J. E. Shin, S. K. Lee, Y. H. Cho, and H. B. Park, Effect of PEG-MEA and graphene oxide additives on the performance of Pebax® 1657 mixed matrix membranes for CO2 separation, J. Membr. Sci., 572, 300-308 (2019).   DOI
24 H. Li, W. Lv, J. Xu, J. Hu, and H. Liu, Can flexible framework fillers keep breathing in mixed matrix membranes to enhance separation performance?, J. Membr. Sci., 614, 118426 (2020).   DOI
25 S. Wang, Z. Huang, X. Ru, and J. Wang, Effects of different porous fillers on interfacial properties of poly(vinyl alcohol) hybrid films, J. Appl. Polym. Sci., 138(27), 50641 (2021).   DOI
26 T. Chakrabarty, P. Neelakanda, and K. Peinemann, CO2 selective, zeolitic imidazolate framework-7 based polymer composite mixed-matrix membranes, J. Mater. Sci. Res., 7, 1-11 (2018).
27 M. Ahmadi, S. Janakiram, Z. Dai, L. Ansaloni, and L. Deng, Performance of mixed matrix membranes containing porous two-dimensional (2D) and three-dimensional (3D) fillers for CO2 separation: A review, Membranes, 8, 50 (2018).   DOI
28 P. Zhao, G. I. Lampronti, G. O. Lloyd, E. Suard, and S. A. Redfern, Direct visualisation of carbon dioxide adsorption in gate-opening zeolitic imidazolate framework ZIF-7, J. Mater. Chem. A, 2, 620-623 (2014).   DOI
29 A. Arami-Niya, G. Birkett, Z. Zhu, and T. E. Rufford, Gate opening effect of zeolitic imidazolate framework ZIF-7 for adsorption of CH4 and CO2 from N2, J. Mater. Chem. A, 5, 21389-21399 (2017).   DOI
30 T. Li, Y. Pan, K. Peinemann, and Z. Lai, Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers, J. Membr. Sci., 425, 235-242 (2013).   DOI
31 P. Bernardo, J. C. Jansen, F. Bazzarelli, F. Tasselli, A. Fuoco, K. Friess, P. Izak, V. Jarmarova, M. Kacirkova, and G. Clarizia, Gas transport properties of Pebax®/room temperature ionic liquid gel membranes, Sep. Purif. Technol., 97, 73-82 (2012).   DOI
32 A. Ebrahimi and M. Mansournia, Zeolitic imidazolate framework-7: Novel ammonia atmosphere-assisted synthesis, thermal and chemical durability, phase reversibility and potential as highly efficient nanophotocatalyst, Chem. Phys., 511, 33-45 (2018).   DOI
33 B. A. Al-Maythalony, A. M. Alloush, M. Faizan, H. Dafallah, M. A. Elgzoly, A. A. Seliman, A. Al-Ahmed, Z. H. Yamani, M. A. Habib, and K. E. Cordova, Tuning the interplay between selectivity and permeability of ZIF-7 mixed matrix membranes, ACS Appl. Mater. Interfaces, 9, 33401-33407 (2017).   DOI
34 C. K. Yeom, J. M. Lee, Y. T. Hong, and S. C. Kim, Evaluation of gas transport parameters through dense polymeric membranes by continuous-flow technique, Membr. J., 9, 141-150 (1999).
35 M. Ebrahimi and M. Mansournia, Rapid room temperature synthesis of zeolitic imidazolate framework-7 (ZIF-7) microcrystals, Mater. Lett., 189, 243-247 (2017).   DOI
36 S. W. Hwang, Y. Chung, B. C. Chun, and S. J. Lee, Gas permeability of polyethylene films containing zeolite powder, Polym. Korea, 28, 374-381 (2004).
37 R. S. Murali, S. Sridhar, T. Sankarshana, and Y. V. L. Ravikumar, Gas permeation behavior of Pebax-1657 nanocomposite membrane incorporated with multiwalled carbon nanotubes, Ind. Eng. Chem. Res., 49, 6530-6538 (2010).   DOI
38 L. Zhang, Z. Hu, and J. Jiang, Metal-organic framework/polymer mixed-matrix membranes for H2/CO2 separation: A fully atomistic simulation study, J. Phys. Chem. C, 116, 19268-19277 (2012).   DOI
39 A. Noguera-Diaz, J. Villarroel-Rocha, V. P. Ting, N. Bimbo, K. Sapagb, and T. J. Maysa, Flexible ZIFs: Probing guest-induced flexibility with CO2, N2 and Ar adsorption, J. Chem. Technol. Biotechnol., 94, 3787-3792 (2019).   DOI
40 H. Kim, Gas permeation properties of carbon dioxide and methane for PEBAXTM/TEOS hybrid membranes, Korean Chem. Eng. Res., 49, 460-464 (2011).   DOI
41 V. Bondar, B. Freeman, and I. Pinnau, Gas transport properties of poly(ether-b-amide) segmented block copolymers, J. Polym. Sci. B: Polym. Phys., 38, 2051-2062 (2000).   DOI
42 L. M. Robeson, The upper bound revisited, J. Membr. Sci., 320, 390-400 (2008).   DOI
43 G. M. Shi, H. Chen, Y. Jean, and T. S. Chung, Sorption, swelling, and free volume of polybenzimidazole (PBI) and PBI/zeolitic imidazolate framework (ZIF-8) nano-composite membranes for pervaporation, Polymer, 54, 774-783 (2013).   DOI
44 V. Nafisi and M. Hagg, Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture, J. Membr. Sci., 459, 244-255 (2014).   DOI
45 R. S. Murali, A. Ismail, M. Rahman, and S. Sridhar, Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations, Sep. Purif. Technol., 129, 1-8 (2014).   DOI
46 N. Azizi and M. R. Hojjati, Using Pebax-1074/ZIF-7 mixed matrix membranes for separation of CO2 from CH4, Petrol. Sci. Technol., 36, 993-1000 (2018).   DOI
47 A. Khoshkharam, N. Azizi, R. M. Behbahani, and M. A. Ghayyem, Separation of CO2 from CH4 using a synthesized Pebax-1657/ZIF-7 mixed matrix membrane, Petrol. Sci. Technol., 35, 667-673 (2017).   DOI
48 J. Kim, T. Park, and E. Chung, Effect of 2-MeIM/Zn molar ratio on CO2 permeability of Pebax/ZIF-8 mixed matrix membranes, J. Membr. Sci. Res., 7, 74-84 (2021).
49 J. E. Shin, S. H. Han, S. Y. Ha, and H. B. Park, The state of the art of membrane technologies for carbon dioxide separation, KIC News, 21, 2-16 (2018).
50 W. Cai, T. Lee, M. Lee, W. Cho, D. Han, N. Choi, A. C. Yip, and J. Choi, Thermal structural transitions and carbon dioxide adsorption properties of zeolitic imidazolate framework-7 (ZIF-7), J. Am. Chem. Soc., 136, 7961-7971 (2014).   DOI