DOI QR코드

DOI QR Code

Implementation of magnetic Fe3O4@ZIF-8 nanocomposite to activate sodium percarbonate for highly effective degradation of organic compound in aqueous solution

  • Sajjadi, Saeed (Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz) ;
  • Khataee, Alireza (Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz) ;
  • Soltani, Reza Darvishi Cheshmeh (Department of Environmental Health Engineering, School of Health, Arak University of Medical Sciences) ;
  • Bagheri, Nafiseh (Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz) ;
  • Karimi, Afzal (Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences) ;
  • Azar, Amirali Ebadi Fard (Faculty of Medicine, Iran University of Medical Sciences)
  • Received : 2018.05.23
  • Accepted : 2018.08.27
  • Published : 2018.12.25

Abstract

Here, as-synthesized $Fe_3O_4$ nanoparticles were incorporated into the zeolitic imidazolate framework (ZIF-8) lattice to activate sodium percarbonate (SPC) for degradation of methylene blue (MB). The reaction rate constant of $Fe_3O_4@ZIF-8/SPC$ process ($0.0632min^{-1}$) at acidic conditions (pH = 3) was more than six times that of the $Fe_3O_4/SPC$ system ($0.009min^{-1}$). Decreasing the solute concentration, along with increasing SPC concentration and $Fe_3O_4@ZIF-8$ nanocomposite (NC) dosage, favored the catalytic degradation of MB. The $Fe_3O_4@ZIF-8$ NC after fifteen consecutive treatment processes showed the excellent stability with a negligible drop in the efficiency of the system (<10%). The reaction pathway was obtained via GC-MS analysis.

Keywords

Acknowledgement

Supported by : University of Tabriz, Arak University of Medical Sciences

References

  1. R.K. Thines, N.M. Mubarak, S. Nizamuddin, J.N. Sahu, E.C. Abdullah, P. Ganesan, J. Taiwan Inst. Chem. Eng. 72 (2017) 116. https://doi.org/10.1016/j.jtice.2017.01.018
  2. S. Jorfi, R.D.C. Soltani, M. Ahmadi, A. Khataee, M. Safari, J. Environ. Manag. 187 (2017) 111. https://doi.org/10.1016/j.jenvman.2016.11.042
  3. A. Hassani, R. Darvishi Cheshmeh Soltani, M. Kiransan, S. Karaca, C. Karaca, A. Khataee, Korean J. Chem. Eng. 33 (2016) 178. https://doi.org/10.1007/s11814-015-0106-y
  4. R.D.C. Soltani, M. Safari, M. Mashayekhi, Ultrason. Sonochem. 30 (2016) 123. https://doi.org/10.1016/j.ultsonch.2015.11.018
  5. G. Jin, Y. Eom, T.G. Lee, J. Ind. Eng. Chem. 42 (2016) 46. https://doi.org/10.1016/j.jiec.2016.07.029
  6. E. Iritani, N. Katagiri, Y. Yamaoka, J. Taiwan Inst. Chem. Eng. (2017), doi:http://dx.doi.org/10.1016/j.jtice.2017.09.040 (in press).
  7. H.H. Kim, T.G. Lee, J. Ind. Eng. Chem. 47 (2017) 446. https://doi.org/10.1016/j.jiec.2016.12.019
  8. X. Fu, X. Gu, S. Lu, V.K. Sharma, M.L. Brusseau, Y. Xue, M. Danish, G.Y. Fu, Z. Qiu, Q. Sui, Chem. Eng. J. 309 (2017) 22. https://doi.org/10.1016/j.cej.2016.10.006
  9. R.D.C. Soltani, A. Rezaee, A. Khataee, H. Godini, Res. Chem. Intermed. 39 (2013) 4277. https://doi.org/10.1007/s11164-012-0944-8
  10. D.W. Lee, B.R. Yoo, J. Ind. Eng. Chem. 20 (2014) 3947. https://doi.org/10.1016/j.jiec.2014.08.004
  11. J.H. Cho, Y. Eom, S.H. Jeon, T.G. Lee, J. Ind. Eng. Chem. 19 (2013) 144. https://doi.org/10.1016/j.jiec.2012.07.016
  12. Z. Miao, X. Gu, S. Lu, X. Zang, X. Wu, M. Xu, L.B.B. Ndong, Z. Qiu, Z. Qui, Q. Sui, G. Y. Fu, Chemosphere 119 (2015) 1120. https://doi.org/10.1016/j.chemosphere.2014.09.065
  13. Z. Miao, X. Gu, S. Lu, M.L. Brusseau, X. Zhang, X. Fu, M. Danish, Z. Qiu, Q. Sui, Chem. Eng. J. 281 (2015) 286. https://doi.org/10.1016/j.cej.2015.06.076
  14. O. Acisli, A. Khataee, R.D.C. Soltani, S. Karaca, Ultrason. Sonochem. 35 (2017) 210. https://doi.org/10.1016/j.ultsonch.2016.09.020
  15. X. Fu, X. Gu, S. Lu, Z. Miao, M. Xu, X. Zhang, Z. Qiu, Q. Sui, Chem. Eng. J. 267 (2015) 25. https://doi.org/10.1016/j.cej.2014.12.104
  16. K. Nakashima, Y. Ebi, M. Kubo, N. Shibasaki-Kitakawa, T. Yonemoto, Ultrason. Sonochem. 29 (2016) 455. https://doi.org/10.1016/j.ultsonch.2015.10.017
  17. Z. Miao, X. Gu, S. Lu, M.L. Brusseau, N. Yan, Z. Qiu, Q. Sui, J. Hazard. Mater. 300 (2015) 530. https://doi.org/10.1016/j.jhazmat.2015.07.047
  18. A.A. Babaei, F. Ghanbari, J. Water Reuse Desalin. 6 (4) (2016) 484-494. https://doi.org/10.2166/wrd.2016.188
  19. H.R. Sindelar, M.T. Brown, T.H. Boyer, Chemosphere 105 (2014) 112. https://doi.org/10.1016/j.chemosphere.2013.12.040
  20. P.T.L. Huong, L.T. Huy, H. Lan, L.H. Thang, T.T. An, N. Van Quy, P.A. Tuan, J. Alonso, M.-H. Phan, A.-T. Le, J. Alloys Compd. 739 (2018) 139. https://doi.org/10.1016/j.jallcom.2017.12.178
  21. X. Li, W. Guo, Z. Liu, R. Wang, H. Liu, Appl. Surf. Sci. 369 (2016) 130. https://doi.org/10.1016/j.apsusc.2016.02.037
  22. V.K. Sharma, M. Feng, J. Hazard. Mater. (2017), doi:http://dx.doi.org/10.1016/j.jhazmat.2017.09.043 (in press).
  23. N. Yang, P. Ning, K. Li, J. Wang, J. Taiwan Inst. Chem. Eng. 86 (2018) 73-80. https://doi.org/10.1016/j.jtice.2018.02.006
  24. P. Kumar, V. Bansal, K.-H. Kim, E.E. Kwon, J. Ind. Eng. Chem. 62 (2018) 130. https://doi.org/10.1016/j.jiec.2017.12.051
  25. W. Li, X. Wu, S. Li, W. Tang, Y. Chen, Appl. Surf. Sci. 436 (2018) 252. https://doi.org/10.1016/j.apsusc.2017.11.151
  26. W. Ma, N. Wang, Y. Fan, T. Tong, X. Han, Y. Du, Chem. Eng. J. 336 (2018) 721. https://doi.org/10.1016/j.cej.2017.11.164
  27. S. Ding, C. Zhang, Y. Liu, H. Jiang, W. Xing, R. Chen, J. Ind. Eng. Chem. 46 (2017) 258. https://doi.org/10.1016/j.jiec.2016.10.037
  28. Q. Bao, Y. Lou, T. Xing, J. Chen, Inorg. Chem. Commun. 37 (2013) 170. https://doi.org/10.1016/j.inoche.2013.09.061
  29. K.-Y.A. Lin, H.-A. Chang, J. Taiwan Inst. Chem. Eng. 53 (2015) 40. https://doi.org/10.1016/j.jtice.2015.02.027
  30. R.-M. Kong, Y. Zhao, Y. Zheng, F. Qu, RSC Adv. 7 (2017) 31365. https://doi.org/10.1039/C7RA03918B
  31. X. Jiang, H.-Y. Chen, L.-L. Liu, L.-G. Qiu, X. Jiang, J. Alloys Compd. 646 (2015) 1075. https://doi.org/10.1016/j.jallcom.2015.06.021
  32. H. Farzi-Khajeh, K.D. Safa, S. Dastmalchi, J. Chromatogr. B 1068-1069 (2017) 210. https://doi.org/10.1016/j.jchromb.2017.10.041
  33. Y. Pan, Y. Liu, G. Zeng, L. Zhao, Z. Lai, Chem. Commun. 47 (2011) 2071. https://doi.org/10.1039/c0cc05002d
  34. X. Fu, X. Gu, S. Lu, V.K. Sharma, M.L. Brusseau, Y. Xue, M. Danish, G.Y. Fu, Z. Qiu, Q. Sui, Chem. Eng. J. 309 (2017) 22. https://doi.org/10.1016/j.cej.2016.10.006
  35. H. Cui, X. Gu, S. Lu, X. Fu, X. Zhang, G.Y. Fu, Z. Qiu, Q. Sui, Chem. Eng. J. 309 (2017) 80. https://doi.org/10.1016/j.cej.2016.10.029
  36. A. Khataee, M. Sheydaei, A. Hassani, M. Taseidifar, S. Karaca, Ultrason. Sonochem. 22 (2015) 404. https://doi.org/10.1016/j.ultsonch.2014.07.002
  37. A. Khataee, S. Sajjadi, A. Hasanzadeh, B. Vahid, S.W. Joo, J. Environ. Manag. 199 (2017) 31. https://doi.org/10.1016/j.jenvman.2017.04.095
  38. Y. Lu, X. Liang, C. Niyungeko, J. Zhou, J. Xu, G. Tian, Talanta 178 (2018) 324. https://doi.org/10.1016/j.talanta.2017.08.033
  39. R. Darvishi Cheshmeh Soltani, M. Mashayekhi, Chemosphere 194 (2018) 471. https://doi.org/10.1016/j.chemosphere.2017.12.033
  40. H. Jiang, Y. Sun, J. Feng, J. Wang, Water Sci. Technol. 74 (2016) 1116. https://doi.org/10.2166/wst.2016.300
  41. Y. Shao, L. Zhou, C. Bao, J. Ma, M. Liu, F. Wang, Chem. Eng. J. 283 (2016) 1127. https://doi.org/10.1016/j.cej.2015.08.051
  42. A. Hassani, R.D.C. Soltani, S. Karaca, A. Khataee, J. Ind. Eng. Chem. 21 (2015) 1197. https://doi.org/10.1016/j.jiec.2014.05.034
  43. S. Dadfarnia, A.M. Haji Shabani, S.E. Moradi, S. Emami, Appl. Surf. Sci. 330 (2015) 85. https://doi.org/10.1016/j.apsusc.2014.12.196
  44. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S. Sing, Pure Appl. Chem. 87 (2015) 1051. https://doi.org/10.1515/pac-2014-1117
  45. I. Ahmed, B.N. Bhadra, H.J. Lee, S.H. Jhung, Catal. Today 301 (2018) 90. https://doi.org/10.1016/j.cattod.2017.02.011
  46. X.-H. Zhu, C.-X. Yang, X.-P. Yan, Microporous Mesoporous Mater. 259 (2018) 163. https://doi.org/10.1016/j.micromeso.2017.10.001
  47. M.F.F. Sze, G. McKay, Environ. Pollut. 158 (2010) 1669. https://doi.org/10.1016/j.envpol.2009.12.003
  48. H. Cui, X. Gu, S. Lu, X. Fu, X. Zhang, G.Y. Fu, Z. Qiu, Q. Sui, Chem. Eng. J. 309 (2017) 80. https://doi.org/10.1016/j.cej.2016.10.029
  49. R.D.C. Soltani, S. Jorfi, M. Safari, M.-S. Rajaei, J. Environ. Manag. 179 (2016) 47. https://doi.org/10.1016/j.jenvman.2016.05.001
  50. U.S.EPA . National Secondary Drinking Water Regulations (NSDWRs) U.S.E.P. Agency , 2009;

Cited by

  1. Sonocatalytic degradation of tetracycline antibiotic using zinc oxide nanostructures loaded on nano-cellulose from waste straw as nanosonocatalyst vol.55, pp.None, 2018, https://doi.org/10.1016/j.ultsonch.2019.03.009
  2. Stone cutting industry waste-supported zinc oxide nanostructures for ultrasonic assisted decomposition of an anti-inflammatory non-steroidal pharmaceutical compound vol.58, pp.None, 2018, https://doi.org/10.1016/j.ultsonch.2019.104669
  3. Visible light-driven BiOI/ZIF-8 heterostructure and photocatalytic adsorption synergistic degradation of BPA vol.46, pp.6, 2020, https://doi.org/10.1007/s11164-020-04120-z
  4. Application of percarbonate and peroxymonocarbonate in decontamination technologies vol.105, pp.None, 2018, https://doi.org/10.1016/j.jes.2020.12.031
  5. Significantly enhanced Fenton-based oxidation processes with CuS-Cu9S8 as co-catalyst by accelerating the Fe3+/Fe2+cycles vol.559, pp.None, 2018, https://doi.org/10.1016/j.apsusc.2021.149952
  6. Efficient degradation of sulfamethazine via activation of percarbonate by chalcopyrite vol.202, pp.None, 2018, https://doi.org/10.1016/j.watres.2021.117451
  7. Hydroxyapatite Coated with Co-Based Metal Organic Framework Nanoparticles as Heterojunctions for Catalytic Degradation of Organics vol.4, pp.9, 2021, https://doi.org/10.1021/acsanm.1c01839
  8. Green synthesis of magnetic nanocomposite by leave extract for the treatment of Methylene blue contaminated water vol.8, pp.None, 2021, https://doi.org/10.1016/j.ceja.2021.100193
  9. Remediation potentials of composite metal-organic frameworks (MOFs) for dyes as water contaminants: A comprehensive review of recent literatures vol.16, pp.None, 2018, https://doi.org/10.1016/j.enmm.2021.100568
  10. Synthesis, characterization, and application of ZIF-8/Ag3PO4, MoS2/Ag3PO4, and h-BN/Ag3PO4 based photocatalytic nanocomposi vol.641, pp.None, 2022, https://doi.org/10.1016/j.memsci.2021.119939