DOI QR코드

DOI QR Code

Bimetallic Zeolitic Imidazolate Framework Derived Co3O4/CoFe2O4 Catalyst Loaded In2O3 Nanofibers for Highly Sensitive and Selective Ethanol Sensing

금속-유기 골격체 열분해를 통해 합성된 Co3O4/CoFe2O4 첨가 In2O3나노섬유를 이용한 고감도 고선택성 에탄올 센서

  • Lee, Soo-Min (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Tae-Hyun (Department of Materials Science and Engineering, Korea University) ;
  • Jo, Young-Moo (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Ki Beom (Department of Materials Science and Engineering, Korea University) ;
  • Lee, Jong-Heun (Department of Materials Science and Engineering, Korea University)
  • 이수민 (고려대학교 신소재공학부) ;
  • 김태현 (고려대학교 신소재공학부) ;
  • 조영무 (고려대학교 신소재공학부) ;
  • 김기범 (고려대학교 신소재공학부) ;
  • 이종흔 (고려대학교 신소재공학부)
  • Received : 2021.03.16
  • Accepted : 2021.03.23
  • Published : 2021.03.31

Abstract

In this study, pure and Co3O4/CoFe2O4-loaded Indium oxide (In2O3) nanofibers were synthesized by the electrospinning of an Indium/Polyvinylpyrrolidone precursor solution containing cobalt and iron bimetallic zeolitic imidazolate frameworks and subsequent heat treatment. The ethanol, toluene, p-xylene, benzene, carbon monodxide, and hydrogen gas sensing characteristics of the solution were measured at 250-400 ℃. 0.5 at%-Co3O4/CoFe2O4-loaded In2O3 nanofibers exhibited extreme response (resistance ratio - 1) to 5 ppm of ethanol (210.5) at 250 ℃ and excellent selectivity over the interfering gases. In contrast, pure In2O3 nanofibers exhibited relatively low responses to all the analyte gases and low selectivity above 250-400 ℃. The superior response and selectivity toward ethanol is explained by the catalytic roles of Co3O4 and CoFe2O4 in gas sensing reaction and the electronic sensitization induced by the formation of p (Co3O4/CoFe2O4)-n (In2O3) junctions.

Keywords

References

  1. N. Yamazoe, "Toward innovations of gas sensor technology", Sens Actuator B Chem, Vol. 108, No. 1-2, pp. 2-14, 2005. https://doi.org/10.1016/j.snb.2004.12.075
  2. Y.-M. Jo, K. Lim, K., H.-J. Choi, J.-W. Yoon, S.-Y. Kim, and J.-H. Lee, "2D metal-organic framework derived coloading of Co3O4 and PdO nanocatalysts on In2O3 hollow spheres for tailored design of high-performance breath acetone sensors", Sens Actuator B Chem, Vol. 325, pp. 128821, 2020. https://doi.org/10.1016/j.snb.2020.128821
  3. S.-Y. Jeong, Y.-M. Jo, Y. C. Kang, and J.-H. Lee, "Xylene Sensor Using Cr-doped Co3O4 Nanoparticles Prepared by Flame Spray Pyrolysis", J. Sens. Sci. Technol., Vol. 29, No. 2 pp. 112-117, 2020. https://doi.org/10.5369/JSST.2020.29.2.112
  4. N. Yamazoe, G. Sakai, and K. Shimanoe, "Oxide semiconductor gas sensors", Catal. Surv. from Asia, No. 7, Vol. 1, pp. 63-755, 2003. https://doi.org/10.1023/A:1023436725457
  5. M. E. Franke, T. J. Koplin, and U. Simon, "Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter?", Small, Vol. 2, No. 1, pp. 36-50, 2005. https://doi.org/10.1002/smll.200500261
  6. D. H. Kim, Y. S. Shim, and H. W. Jang, "Synthesis of Au-Decorated TiO2 Nanotubes on Patterned Substrates for Selective Gas Sensor", J. Sens. Sci. Technol, Vol. 23, No. 5, pp. 305-309, 2014. https://doi.org/10.5369/JSST.2014.23.5.305
  7. B. Y. Kim, C. S. Lee, J. S. Park, and J.-H. Lee, "Preparation of Pt-, Ni- and Cr- Decorated SnO2 Tubular Nanofibers and Their Gas Sensing Properties", J. Sens. Sci. Technol, Vol. 23, No. 3, pp. 151-154, 2015.
  8. M. Penza, C. Martucci, and G. Cassano, "NOx gas sensing characteristics of WO3 thin films activated by noble metals (Pd, Pt, Au) layers", Sens Actuator B Chem, Vol. 50, No. 1, pp. 52-59, 1998. https://doi.org/10.1016/S0925-4005(98)00156-7
  9. C.-W. Na, H.-S. Woo, I.-D. Kim, and J.-H. Lee, "Selective detection of NO2 and C2H5OH using a Co3O4-decorated ZnO nanowire network sensor", Chem. Commun., Vol. 47, No. 18, pp. 5148-5150, 2011. https://doi.org/10.1039/c0cc05256f
  10. D. R. Patil, L. A. Patil, and P. P. Patil, "Cr2O3-activated ZnO thick film resistors for ammonia gas sensing operable at room temperature", Sens Actuator B Chem, Vol. 126, No. 2, pp. 368-374, 2007. https://doi.org/10.1016/j.snb.2007.03.028
  11. W. Tan, J. Tan, L. Fan, Z. Yu, J. Qian, and X. Huang, "Fe2O3-loaded NiO nanosheets for fast response/recovery and high response gas sensor", Sens Actuator B Chem, Vol. 256, pp. 282-293, 2018. https://doi.org/10.1016/j.snb.2017.09.187
  12. M. Eddaoudi, J.-H. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, and O.M. Yaghi, "Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage", Science, Vol. 295, No. 5554, pp. 469-472, 2002. https://doi.org/10.1126/science.1067208
  13. J.-R. Li, R. J. Kuppler, and H.-C. Zhou, "Selective gas adsorption and separation in metal-organic frameworks", Chem. Soc. Rev., Vol. 38, No. 5, pp.1477-1504, 2009. https://doi.org/10.1039/b802426j
  14. N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J.-H. Kim, M. O'Keeffe, and O. M. Yaghi, "Hydrogen storage in microporous metal-organic frameworks", Science, Vol. 300, No. 5622, pp. 1127-1129, 2003. https://doi.org/10.1126/science.1083440
  15. C. Hu, S. Bai, L. Gao, S. Liang, J. Yang, S.-D. Cheng, S.-B. Mi, and M. Qiu, "Porosity-Induced High Selectivity for CO2 Electroreduction to CO on Fe-Doped ZIF-Derived Carbon Catalysts", ACS Catal., Vol. 9, No. 12, pp. 11579-11588, 2019. https://doi.org/10.1021/acscatal.9b03175
  16. J. Yang, F. Zhang, H. Lu, X. Hong, H. Jiang, Y. Wu, and Y. Li, "Hollow Zn/Co ZIF particles derived from core-shell ZIF-67@ ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene", Angew. Chem., Vol. 127 No. 37, pp. 11039-11043, 2015. https://doi.org/10.1002/ange.201504242
  17. Y. Jin, J. Wu, J. Wang, Y. Fan, S. Zhang, N. Ma, and W. Dai, "Highly efficient capture of benzothiophene with a novel water-resistant-bimetallic Cu-ZIF-8 material", Inorg. Chim. Acta., Vol. 503, pp. 119412, 2020. https://doi.org/10.1016/j.ica.2020.119412
  18. W. Miao, Y. Zhang, H. Li, Z. Zhang, L. Li, Z. Yu, and W. Zhang, "ZIF-8/ZIF-67-derived 3D amorphous carbon-encapsulated CoS/NCNTs supported on CoS-coated carbon nanofibers as an advanced potassium-ion battery anode", J. Mater. Chem. A, Vol. 7, No. 10, pp. 5504-5512, 2019. https://doi.org/10.1039/c8ta12457d
  19. M. U. Tahir, H. Arshad, H. Zhang, Z. Hou, J. Wang, C. Yang, and X. Su, "Room temperature and aqueous synthesis of bimetallic ZIF derived CoNi layered double hydroxides and their applications in asymmetric supercapacitors", J. Collid Interface Sci., Vol. 579, pp. 195-204, 2020. https://doi.org/10.1016/j.jcis.2020.06.050
  20. W. Hong, M. Kitta, and Q. Xu, "Bimetallic MOF-derived FeCo-P/C nanocomposites as efficient catalysts for oxygen evolution reaction", Small Methods., Vol. 2, No. 12, pp. 1800214, 2018. https://doi.org/10.1002/smtd.201800214
  21. X. Chu., D. Jiang, G. Yu, and C. Zheng, "Ethanol gas sensor based on CoFe2O4 nano-crystallines prepared by hydrothermal method", Sens Actuator B Chem, Vol. 120, No. 1, pp. 177-181, 2006. https://doi.org/10.1016/j.snb.2006.02.008
  22. Y.-M. Jo, T.-H. Kim, C.-S. Lee, K.-R. Lim, C.-W. N, F Abdel-Hady, A.- A. Wazzan, and J.-H. Lee, "Metal-organic framework-derived hollow hierarchical Co3O4 nanocages with tunable size and morphology: ultrasensitive and highly selective detection of methylbenzenes", ACS Appl. Mater. Interfaces, Vol. 10, No. 10, pp. 8860-8868, 2018. https://doi.org/10.1021/acsami.8b00733