Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.1.68

Bimetallic Co/Zn-ZIF as an Efficient Photocatalyst for Degradation of Indigo Carmine  

Nguyen, Thanh Nhan (Research Center for Eco Multi-Functional Nano Materials, Sun Moon University)
Nguyen, Hoang Phuc (Research Center for Eco Multi-Functional Nano Materials, Sun Moon University)
Kim, Tae-Ho (Research Center for Eco Multi-Functional Nano Materials, Sun Moon University)
Lee, Soo Wohn (Department of Environmental and Bio-Chemical Engineering, Sun Moon University)
Publication Information
Korean Journal of Materials Research / v.28, no.1, 2018 , pp. 68-74 More about this Journal
Abstract
Cobalt-incorporated zeolitic imidazolate framework ZIF-8 was synthesized by a simple one-pot synthesis method at room temperature. Powder X-ray diffraction patterns and energy dispersive X-ray spectrum confirmed the formation of the bimetallic Co/Zn-ZIF structure. UV-Vis diffuse reflectance spectra revealed that the bimetallic ZIF had a lower HOMO-LUMO gap compared with ZIF-8 due to the charge transfer process from organic ligands to cobalt centers. A hydrolytic stability test showed that Co/Zn-ZIF is very robust in aqueous solution - the most important criterion for any material to be applied in photodegradation. The photocatalytic efficiency of the synthesized samples was investigated over the Indigo Carmine (IC) dye degradation under solar simulated irradiation. Cobalt incorporated ZIF-8 exhibited high efficiency over a wide range of pH and initial concentration. The degradation followed through three distinct stages: a slow initial stage, followed by an accelerated stage and completed with a decelerated stage. Moreover, the photocatalytic performance of the synthesized samples was highly improved in alkaline environment rather than in acidic or neutral environments, which may have been because in high pH medium, the increased concentration of hydroxyl ion facilitated the formation of hydroxyl radicals, a reactive species responsible for the breaking of the Indigo Carmine structure. Thus, Co/Zn-ZIF is a promising and green material for solving the environmental pollution caused by textile industries.
Keywords
metal organic framework; bimetallic zeolitic imidazolate framework; indigo carmine; photodegradation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Mittal, J. Mittal and L. Kurup, J. Hazard. Mater., 137, 591 (2006).   DOI
2 E. Gutierrez-Segura, M. Solache-Rios and A. Colin-Cruz, J. Hazard. Mater., 170, 1227 (2009).   DOI
3 M. S. Secula, I. Crezescu and S. Petrescu, Desalination, 277, 227 (2011).   DOI
4 S. Ammar, R. Abdelhedi, C. Flox, C. Arias and E. Brillas, Environ. Chem. Lett., 4, 229 (2006).   DOI
5 S. M. de Oliveira Brito, H. M. C. Andrade, L. F. Soares and R. P. de Azevedo, J. Hazard. Mater., 174, 84 (2010).   DOI
6 I. K. Konstantinou and T. A. Albanis, Appl. Catal. B, 49, 1 (2004).   DOI
7 P. Jackson and M. I. Attalla, Rapid Commun. Mass Spectrom., 21, 1893 (2007).   DOI
8 N. Barka, A. Assabbane, A. Nounah and Y. A. Ichou, J. Hazard. Mater., 152, 1054 (2008).
9 A. G. S. Prado, L. B. Bolzon, C. P. Pedroso, A. O. Moura and L. L. Costa, Appl. Catal. B, 82, 219 (2008).   DOI
10 M. Vautier, C. Guillard and J-M. Herrmann, J. Catal., 201, 46 (2001).   DOI
11 J. D. Torres, E. A. Faria, J. R. SouzaDe and A. G. S. Prado, J. Photochem. Photobiol. A, 182, 202 (2006).   DOI
12 C. Wang, J. Li, X. Lv, Y. Zhang and G. Guo, Energy Environ. Sci., 7, 2831, (2014).   DOI
13 A. J. Howarth, Y. Liu, P. Li, Z. Li , T. C. Wang , J. T. Hupp and O. K. Farha, Nat. Rev. Mater., 1, 1 (2016).
14 C. Flox, S. Ammar, C. Arias, E. Brillas, A. V. Vargas-Zavala and R. Abdelhedi, Appl. Catal. B, 67, 93 (2006).   DOI
15 T. Zhang and W. Lin, Chem. Soc. Rev., 43, 5982 (2014).
16 M. A. Nasalevich, M. van der Veen, F. Kapteijn and J. Gascon., CrystEngComm., 16, 4919 (2014).   DOI
17 H-P. Jing, C-C. Wang, Y-W. Zhang, P. Wang and R. Li, RSC Adv., 4, 54454 (2014).
18 K. Zhou, B. Mousavi, Z. Luo, S. Phatanasri, S. Chaemchuen and F. Verpoort, J. Mater. Chem. A, 5, 952(2017).   DOI
19 J. K. Zar ba, M. Nyk and M. Samoc, Cryst. Growth Des., 16, 6419 (2016).   DOI
20 G. Kaur, R. K. Rai, D. Tyagi, X. Yao, P-Z. Li, X-C. Yang, Y. Zhao, Q. Xu and S. K. Singh, J. Mater. Chem. A, 4, 14932 (2016).   DOI
21 R. Wu, X. Qian, K. Zhou, J. Wei, J. Lou and P. M. Ajayan, ACS Nano, 8, 6297 (2014).   DOI
22 L. L. Costa and A. G. S. Prado, J. Photochem. Photobiol. A, 201, 45 (2009).   DOI
23 C. Samano-Alonso, J. Hernandez-Obregon, R. Cabrera, J.A.I. Diaz-Gongora and E. Reguera, Colloids Surf. A: Physicochem. Eng. Aspects. 506, 50 (2016).   DOI
24 B. Pattengale, S. Yang, J. Ludwig, Z. Huang, X. Zhang and J. Huang, J. Am. Chem. Soc., 138, 8072 (2016).   DOI
25 E. L. Bustamante, J. L. Fernandez and J. M. Zamaro, J. Colloid Interface Sci., 424, 37 (2014).   DOI
26 Y. Qu, X. Zhong, Y. Li, L. Liao, Y. Huang and X. Duan, J. Mater. Chem., 20, 3590 (2010).   DOI
27 L. S. Reddy Yadav, K. Lingaraju, K. Manjunath, G. K. Raghu, K. H. Sudheer Kumar and G. Nagaraju, Mater. Res. Express, 4, 1 (2017).