• Title/Summary/Keyword: Image flip

Search Result 56, Processing Time 0.064 seconds

Low Temperature Flip Chip Bonding Process

  • Kim, Young-Ho
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.09a
    • /
    • pp.253-257
    • /
    • 2003
  • The low temperature flip chip technique is applied to the package of the temperature-sensitive devices for LCD systems and image sensors since the high temperature process degrades the polymer materials in their devices. We will introduce the various low temperature flip chip bonding techniques; a conventional flip chip technique using eutectic Bi-Sn (mp: $138^{\circ}C$) or eutectic In-Ag (mp: $141^{\circ}C$) solders, a direct bump-to-bump bonding technique using solder bumps, and a low temperature bonding technique using low temperature solder pads.

  • PDF

Flip Chip Interconnection Method Applied to Small Camera Module

  • Segawa, Masao;Ono, Michiko;Karasawa, Jun;Hirohata, Kenji;Aoki, Makoto;Ohashi, Akihiro;Sasaki, Tomoaki;Kishimoto, Yasukazu
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.10a
    • /
    • pp.39-45
    • /
    • 2000
  • A small camera module fabricated by including bare chip bonding methods is utilized to realize advanced mobile devices. One of the driving forces is the TOG (Tape On Glass) bonding method which reduces the packaging size of the image sensor clip. The TOG module is a new thinner and smaller image sensor module, using flip chip interconnection method with the ACP (Anisotropic Conductive Paste). The TOG production process was established by determining the optimum bonding conditions for both optical glass bonding and image sensor clip bonding lo the flexible PCB. The bonding conditions, including sufficient bonding margins, were studied. Another bonding method is the flip chip bonding method for DSP (Digital Signal Processor) chip. A new AC\ulcorner was developed to enable the short resin curing time of 10 sec. The bonding mechanism of the resin curing method was evaluated using FEM analysis. By using these flip chip bonding techniques, small camera module was realized.

  • PDF

Ultrasonic Bonding of Au Flip Chip Bump for CMOS Image Sensor (CMOS 이미지 센서용 Au 플립칩 범프의 초음파 접합)

  • Koo, Ja-Myeong;Moon, Jung-Hoon;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.1
    • /
    • pp.19-26
    • /
    • 2007
  • This study was focused on the feasibility of ultrasonic bonding of Au flip chip bumps for a practical complementary metal oxide semiconductor (CMOS) image sensor with electroplated Au substrate. The ultrasonic bonding was carried out with different bonding pressures and times after the atmospheric pressure plasma cleaning, and then the die shear test was performed to optimize the ultrasonic bonding parameters. The bonding pressure and time strongly affected the bonding strength of the bumps. The Au flip chip bumps were successfully bonded with the electroplated Au substrate at room temperature, and the bonding strength reached approximate 73 MPa under the optimum conditions.

  • PDF

Optimal Flip Angle for T2-Weighted Effect in Micro 4.7T MRI SE Sequence (마이크로 4.7T MRI SE Sequence에서 T2강조효과를 위한 최적의 Flip Angle)

  • Lee, Sang-Ho
    • Journal of radiological science and technology
    • /
    • v.42 no.2
    • /
    • pp.113-117
    • /
    • 2019
  • The purpose of this study was to investigate the FA value which can produce the best T2-weighted images by measuring the signal intensity and noise according to the FA value change in the brain image and the abdominal image of the mouse using micro-MRI. Brain imaging and abdominal imaging of BALB / C mice weighing 20g were performed using 4.7T (Bruker BioSpin MRI GmbH) micro-MRI equipment, Turbo RARE-T2 (spin echo-T2) images were scanned at TR 3500 msec and TE 36 msec. The changes of the FA values were $60^{\circ}$, $80^{\circ}$, $100^{\circ}$, $120^{\circ}$, $140^{\circ}$, $160^{\circ}$ and $180^{\circ}$. We measured signal intensity according to FA values of ventricle and thalamus in brain imaging, The signal intensity of kidney and muscle around the kidney was measured in abdominal images. To obtain SNR and CNR, we measured the background signals of two different parts, not the tissue. In the brain (thalamus) image, the signal intensity of FA $100^{\circ}$ was 7,433 and SNR (6.49) was the highest. In the abdominal (kidney) image, the signal intensity was highest at 16,523 when FA was $120^{\circ}$, and the highest SNR was 8.54 when FA was $140^{\circ}$. The CNR value of the brain image was 1.38 at FA $60^{\circ}$ and gradually increased to 8.29 at FA $180^{\circ}$. The CNR value of the muscle adjacent to the kidney gradually increased from 2.36 when the FA value was $60^{\circ}$ and the highest value was 4,57 at the FA value $180^{\circ}$.

Detection of Flip-chip Bonding Error Through Edge Size Extraction of X-ray Image (X선 영상의 에지 추출을 통한 플립칩 솔더범프의 접합 형상 오차 검출)

  • Song, Chun-Sam;Cho, Sung-Man;Kim, Joon-Hyun;Kim, Joo-Hyun;Kim, Min-young;Kim, Jong-Hyeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.9
    • /
    • pp.916-921
    • /
    • 2009
  • The technology to inspect and measure an inner structure of micro parts has become an important tool in the semi-conductor industrial field with the development of automation and precision manufacturing. Especially, the inspection skill on the inside of highly integrated electronic device becomes a key role in detecting defects of a completely assembled product. X-ray inspection technology has been focused as a main method to inspect the inside structure. However, there has been insufficient research done on the customized inspection technology for the flip-chip assembly due to the interior connecting part of flip chip which connects the die and PCB electrically through balls positioned on the die. In this study, therefore, it is implemented to detect shape error of flip chip bonding without damaging chips using an x-ray inspection system. At this time, it is able to monitor the solder bump shape by introducing an edge-extracting algorithm (exponential approximation function) according to the attenuating characteristic and detect shape error compared with CAD data. Additionally, the bonding error of solder bumps is automatically detectable by acquiring numerical size information at the extracted solder bump edges.

Improved Focal Liver Lesion Detection by Increasing Flip Angle During Gadoxetic Acid-Enhancement in MRI (Gadoxetic acid 조영증강 자기공명영상에서 숙임각 변화에 따른 국소 간종양 검출능 비교)

  • Lee, SeJy;Kim, Young-Keun
    • Journal of radiological science and technology
    • /
    • v.38 no.2
    • /
    • pp.115-120
    • /
    • 2015
  • To study the differences of focal liver lesion image detection at 3 minute, 10 minute and 15 minute time points on gadoxetic acid (GA)'s enhanced MR imaging with a flip angle (FA) of $30^{\circ}$ compared with a $11^{\circ}$. The subjects were 69 patients evaluated with GA enhanced MR imaging with 3.0T MR scanner. The patients are total 35(23 men and 7 women at the mean age of 60.4 years), hepatocellular carcinoma(23) and metastsis(12) except for normal, cyst and hemangioma. After GA was injected, FA $11^{\circ}$ and $30^{\circ}$ images were obtained at 3 minute, 10 minute and 15 minute time points respectively. After quantitative and qualitative assessment of each image was done, statistical analysis was performed by using the independent sample T-test. From both quantitative and qualitative assessment of 3 minute and 10 minute MR images after the injection of GA, FA $30^{\circ}$ images was found to be superior than FA $11^{\circ}$, but there were no statistical significance. However, at 15 minute time point, Statistically significant FA $30^{\circ}$ image(p<0.05) was better than FA $11^{\circ}$ therefore, the FA $30^{\circ}$ improves the focal liver lesion detection. FA $30^{\circ}$ of MR image can detect liver lesion more sensitively than the existing $FA11^{\circ}$ image after GA contrast enhancement at 15 minute time point.

Analog to Digital Converter for CMOS Image Sensor (CMOS Image Sensor에 사용 가능한 아날로그/디지탈 변환)

  • 노주영;윤진한;장철상;손상희
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.137-140
    • /
    • 2002
  • This paper is proposed a 8-bit anolog to digital converter for CMOS image sensor. A anolog to digital converter for CMOS image sensor is required function to control gain. Proposed anolog to digital converter is used frequency divider to control gain. At 3.3 Volt power supply, total static power dissipation is 8mW and programmable gain control range is 30dB. The gain control range can be easily increased with insertion of additional flip-flop at divided-by-N frequency divider circuit.

  • PDF

Experimental Study on Impact Pressure at the Crown Wall of Rubble Mound Seawall and Velocity Fields using Bubble Image Velocimetry (기포영상유속계와 복합파고계를 활용한 경사식 호안 전면에서 쇄파의 형태에 따른 충격쇄파압의 분류)

  • Na, Byoungjoon;Ko, Haeng Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.4
    • /
    • pp.119-127
    • /
    • 2022
  • To investigate varying wave impact pressure exerting at the crest wall of rubble mound seawall, depending on breaking wave properties, regular waves with different wave periods were generated. Wave velocity fields and void fraction were measured using bubble image velocimetry and simple combined wave gauge system (Na and Son, 2021). For the waves with shorter wave period, maximum horizontal velocity was less reduced compared to incident wave speed while breaking-induced air entrainment was occurred intensely, leading to a significant reduction of wave impact pressure at the crest wall. For the waves with longer wave periods, less air wave entrained and the wave structure followed a flip-through mode (Cooker and Peregrine, 1991), resulting in an abrupt increase of the impact pressure.

GAN-based Image-to-image Translation using Multi-scale Images (다중 스케일 영상을 이용한 GAN 기반 영상 간 변환 기법)

  • Chung, Soyoung;Chung, Min Gyo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.767-776
    • /
    • 2020
  • GcGAN is a deep learning model to translate styles between images under geometric consistency constraint. However, GcGAN has a disadvantage that it does not properly maintain detailed content of an image, since it preserves the content of the image through limited geometric transformation such as rotation or flip. Therefore, in this study, we propose a new image-to-image translation method, MSGcGAN(Multi-Scale GcGAN), which improves this disadvantage. MSGcGAN, an extended model of GcGAN, performs style translation between images in a direction to reduce semantic distortion of images and maintain detailed content by learning multi-scale images simultaneously and extracting scale-invariant features. The experimental results showed that MSGcGAN was better than GcGAN in both quantitative and qualitative aspects, and it translated the style more naturally while maintaining the overall content of the image.