Acknowledgement
해양수산과학기술진흥원(KIMST)의 "재해안전 항만 구축 기술개발(PM62370)" 사업의 지원을 받아 수행되었으며, 이에 감사드립니다. 또한 실험을 도와준 장세철, 이주연, 권창헌 씨에게 감사합니다.
References
- Bullock, G.N., Obhrai, C., Peregrine, D.H. and Bredmose, H. (2007). Violent breaking wave impacts. Part 1: results from large-scale regular wave tests on vertical and sloping walls. Coastal Engineering, 54, 602-617. https://doi.org/10.1016/j.coastaleng.2006.12.002
- Chuang, W., Chang, K. and Mercier, R. (2015). Green water velocity due to breaking wave impingement on a tension leg platform. Exp. Fluids, 56(7), 1-21. https://doi.org/10.1007/s00348-014-1876-4
- Cooker, M.J. and Peregrine, D.H. (1991). Wave breaking and wave impact pressures. In: Developments in Coastal Engineering, Univ. of Bristol, 47-64.
- Cox, D.T. and Shin, S.W. (2003), Laboratory measurements of void fraction and turbulence in the bore region of surf zone waves. J. Eng. Mech., 129(10), 1197-1205.
- Deane, G.B. and Stokes, M.D. (2002), Scale dependence of bubble creation mechanisms in breaking waves. Nature, 418(6900), 839-844. https://doi.org/10.1038/nature00967
- Hattori, M., Arami, A. and Yui, T. (1994). Wave impact pressure on vertical walls under breaking waves of various types. Coastal Engineering, 22(1-2), 79-114. https://doi.org/10.1016/0378-3839(94)90049-3
- Ko, H.S., Lee, J.Y., Jang, S.C. and Oh, S.H. (2022). Experimental investigation of wave force on the pavement behind crown wall of rubble mound seawall. J. of Korean Society of Coastal and Ocean Engineers, 34(1), 19-25 (in Korean). https://doi.org/10.9765/KSCOE.2022.34.1.19
- Lin, C., Hsieh, S.-C., Lin, I.-J., Chang, K. and Raikar, R.V. (2012). Flow property and self-similarity in steady hydraulic jumps. Exp. Fluids, 53(5), 1591-1616. https://doi.org/10.1007/s00348-012-1377-2
- Lugni, C., Brocchini, M. and Faltinsen, O. (2006). Wave impact loads: the role of the flipthrough. Phys. Fluids, 18, 122101-122118. https://doi.org/10.1063/1.2399077
- Na, B., Chang, K.-A., Huang, Z.-C. and Lim, H.-J. (2016). Turbulent flow field and air entrainment in laboratory plunging breaking waves. J. Geophys. Res. 121(5), 2980-3009.
- Na, B., Chang, K. and Lim, H. (2020). Flow kinematics and air entrainment under laboratory spilling breaking waves. J. Fluid Mech., 882, A15.
- Na, B. and Son, S. (2021). Void fraction estimation using a simple combined wave gauge system under breaking waves. Ocean Engineering, 241, 110059.
- Pedrozo-Acuna, A., de Alegria-Arzaburu, A.R., Torres-Freyermuth, A., Mendoza, E. and Silva, R. (2011). Laboratory investigation of pressure gradients induced by plunging breakers. Coastal Engineering, 58(8), 722-738. https://doi.org/10.1016/j.coastaleng.2011.03.013
- Rojas, G. and Loewen, M. R. (2010). Void fraction measurements beneath plunging and spilling breaking waves. J. Geophys. Res., 115, C08001.
- Ryu, Y., Chang, K.-A. and Lim, H.-J. (2005). Use of bubble image velocimetry for measurement of plunging wave impinging on structure and associated greenwater. Meas. Sci. Tech., 16, 1945-1953. https://doi.org/10.1088/0957-0233/16/10/009
- Ryu, Y. and Lee, J.Y. (2008). Experimental study of overtopping void ratio by wave breaking. J. of Korean Soc iety of Coastal and Ocean Engineers, 20(2), 157-167 (in Korean).
- Ryu, Y., Lee, J.Y. and Kim, Y. (2007). Runup and overtopping velocity due to wave breaking. J. of Korean Society of Coastal and Ocean Engineers, 19(6), 606-613 (in Korean).
- Song, Y., Chang, K.-A., Ryu, Y. and Kwon, S. (2013). Experimental study on flow kinematics and impact pressure in liquid sloshing. Exp. Fluids, 54(9), 1-20.