Browse > Article
http://dx.doi.org/10.9765/KSCOE.2022.34.4.119

Experimental Study on Impact Pressure at the Crown Wall of Rubble Mound Seawall and Velocity Fields using Bubble Image Velocimetry  

Na, Byoungjoon (Coastal Development and Ocean Energy Research Center, Korea Institute of Ocean Science and Technology)
Ko, Haeng Sik (Coastal Development and Ocean Energy Research Center, Korea Institute of Ocean Science and Technology)
Publication Information
Journal of Korean Society of Coastal and Ocean Engineers / v.34, no.4, 2022 , pp. 119-127 More about this Journal
Abstract
To investigate varying wave impact pressure exerting at the crest wall of rubble mound seawall, depending on breaking wave properties, regular waves with different wave periods were generated. Wave velocity fields and void fraction were measured using bubble image velocimetry and simple combined wave gauge system (Na and Son, 2021). For the waves with shorter wave period, maximum horizontal velocity was less reduced compared to incident wave speed while breaking-induced air entrainment was occurred intensely, leading to a significant reduction of wave impact pressure at the crest wall. For the waves with longer wave periods, less air wave entrained and the wave structure followed a flip-through mode (Cooker and Peregrine, 1991), resulting in an abrupt increase of the impact pressure.
Keywords
impact breaking wave pressure; bubble image velocimetry; void fraction; flip-through;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bullock, G.N., Obhrai, C., Peregrine, D.H. and Bredmose, H. (2007). Violent breaking wave impacts. Part 1: results from large-scale regular wave tests on vertical and sloping walls. Coastal Engineering, 54, 602-617.   DOI
2 Cooker, M.J. and Peregrine, D.H. (1991). Wave breaking and wave impact pressures. In: Developments in Coastal Engineering, Univ. of Bristol, 47-64.
3 Cox, D.T. and Shin, S.W. (2003), Laboratory measurements of void fraction and turbulence in the bore region of surf zone waves. J. Eng. Mech., 129(10), 1197-1205.
4 Deane, G.B. and Stokes, M.D. (2002), Scale dependence of bubble creation mechanisms in breaking waves. Nature, 418(6900), 839-844.   DOI
5 Hattori, M., Arami, A. and Yui, T. (1994). Wave impact pressure on vertical walls under breaking waves of various types. Coastal Engineering, 22(1-2), 79-114.   DOI
6 Ko, H.S., Lee, J.Y., Jang, S.C. and Oh, S.H. (2022). Experimental investigation of wave force on the pavement behind crown wall of rubble mound seawall. J. of Korean Society of Coastal and Ocean Engineers, 34(1), 19-25 (in Korean).   DOI
7 Chuang, W., Chang, K. and Mercier, R. (2015). Green water velocity due to breaking wave impingement on a tension leg platform. Exp. Fluids, 56(7), 1-21.   DOI
8 Lin, C., Hsieh, S.-C., Lin, I.-J., Chang, K. and Raikar, R.V. (2012). Flow property and self-similarity in steady hydraulic jumps. Exp. Fluids, 53(5), 1591-1616.   DOI
9 Lugni, C., Brocchini, M. and Faltinsen, O. (2006). Wave impact loads: the role of the flipthrough. Phys. Fluids, 18, 122101-122118.   DOI
10 Na, B., Chang, K.-A., Huang, Z.-C. and Lim, H.-J. (2016). Turbulent flow field and air entrainment in laboratory plunging breaking waves. J. Geophys. Res. 121(5), 2980-3009.
11 Na, B., Chang, K. and Lim, H. (2020). Flow kinematics and air entrainment under laboratory spilling breaking waves. J. Fluid Mech., 882, A15.
12 Na, B. and Son, S. (2021). Void fraction estimation using a simple combined wave gauge system under breaking waves. Ocean Engineering, 241, 110059.
13 Pedrozo-Acuna, A., de Alegria-Arzaburu, A.R., Torres-Freyermuth, A., Mendoza, E. and Silva, R. (2011). Laboratory investigation of pressure gradients induced by plunging breakers. Coastal Engineering, 58(8), 722-738.   DOI
14 Rojas, G. and Loewen, M. R. (2010). Void fraction measurements beneath plunging and spilling breaking waves. J. Geophys. Res., 115, C08001.
15 Ryu, Y., Chang, K.-A. and Lim, H.-J. (2005). Use of bubble image velocimetry for measurement of plunging wave impinging on structure and associated greenwater. Meas. Sci. Tech., 16, 1945-1953.   DOI
16 Ryu, Y., Lee, J.Y. and Kim, Y. (2007). Runup and overtopping velocity due to wave breaking. J. of Korean Society of Coastal and Ocean Engineers, 19(6), 606-613 (in Korean).
17 Song, Y., Chang, K.-A., Ryu, Y. and Kwon, S. (2013). Experimental study on flow kinematics and impact pressure in liquid sloshing. Exp. Fluids, 54(9), 1-20.
18 Ryu, Y. and Lee, J.Y. (2008). Experimental study of overtopping void ratio by wave breaking. J. of Korean Soc iety of Coastal and Ocean Engineers, 20(2), 157-167 (in Korean).