• Title/Summary/Keyword: ITS1 sequencing

Search Result 475, Processing Time 0.026 seconds

Development of Polymorphic Simple Sequence Repeat Markers using High-Throughput Sequencing in Button Mushroom (Agaricus bisporus)

  • Lee, Hwa-Yong;Raveendar, Sebastin;An, Hyejin;Oh, Youn-Lee;Jang, Kab-Yeul;Kong, Won-Sik;Ryu, Hojin;So, Yoon-Sup;Chung, Jong-Wook
    • Mycobiology
    • /
    • v.46 no.4
    • /
    • pp.421-428
    • /
    • 2018
  • The white button mushroom (Agaricus bisporus) is one of the most widely cultivated species of edible mushroom. Despite its economic importance, relatively little is known about the genetic diversity of this species. Illumina paired-end sequencing produced 43,871,558 clean reads and 69,174 contigs were generated from five offspring. These contigs were subsequently assembled into 57,594 unigenes. The unigenes were annotated with reference genome in which 6,559 unigenes were associated with clusters, indicating orthologous genes. Gene ontology classification assigned many unigenes. Based on genome data of the five offspring, 44 polymorphic simple sequence repeat (SSR) markers were developed. The major allele frequency ranged from 0.42 to 0.92. The number of genotypes and the number of alleles ranged from 1 to 4, and from 2 to 4, respectively. The observed heterozygosity and the expected heterozygosity ranged from 0.00 to 1.00, and from 0.15 to 0.64, respectively. The polymorphic information content value ranged from 0.14 to 0.57. The genetic distances and UPGMA clustering discriminated offspring strains. The SSR markers developed in this study can be applied in polymorphism analyses of button mushroom and for cultivar discrimination.

Protoplast Production from Sphacelaria fusca (Sphacelariales, Phaeophyceae) Using Commercial Enzymes

  • Avila-Peltroche, Jose;Won, Boo Yeon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.50-58
    • /
    • 2020
  • Sphacelaria is a filamentous brown algal genus that can be epibiotic on macroalgae, marine plants, and sea turtles. Its important role in benthic ecosystems, exposure to different stressors (e.g., grazing), and use as a model organism make Sphacelaria ideal for assessing physiological responses of organisms to environmental inputs. Single-cell RNA sequencing is a powerful new probe for understanding environmental responses of organisms at the molecular (transcriptome) level, capable of delineating gene regulation in different cell types. In the case of plants, this technique requires protoplasts ("naked" plant cells). The existing protoplast isolation protocols for Sphacelaria use non-commercial enzymes and are low-yielding. This study is the first to report the production of protoplasts from Sphacelaria fusca (Hudson) S.F. Gray, using a combination of commercial enzymes, chelation, and osmolarity treatment. A simple combination of commercial enzymes (cellulase Onozuka RS, alginate lyase, and driselase) with chelation pretreatment and an increased osmolarity (2512 mOsm/L H2O) gave a protoplast yield of 15.08 ± 5.31 × 104 protoplasts/g fresh weight, with all the Sphacelaria cell types represented. Driselase had no crucial effect on the protoplast isolation. However, the increased osmolarity had a highly significant and positive effect on the protoplast isolation, and chelation pretreatment was essential for optimal protoplast yield. The protocol represents a significant step forward for studies on Sphacelaria by efficiently generating protoplasts suitable for cellular studies, including single-cell RNA sequencing and expression profiling.

Cloning, Sequencing, and Characterization of Enterotoxin Pathogenicity Islet from Bacteroides fragilis 419

  • Rhie, Gi-Eun;Chung, Gyung-Tae;Lee, Yong-Jin;Sung, Won-Keun;Oh, Hee-Bok
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.86-90
    • /
    • 2000
  • We have earlier reported on the cloning and identification of bft-k from an enterotoxigenic strain of Bacteroides fragilis 419, which was isolated from the blood of a Korean patient who suffered from systemic infections [4,5]. The bft-k gene encodes a 397-amino-acids metalloprotease enterotoxin, and the protein has been identified as a new isoform of B. fragilis enterotoxins (BFTs), which are cytopathic to intestinal epithelial cells to induce fluid secretion and tissue damage in ligated intestinal loops [4, 6, 18, 20]. This report describes the cloning and sequencing of the enterotoxin pahogenicity islet of B. fragilis 419 which contains the bft-k gene. the cloned enterotoxin pathogenicity islet was found to have 6,045 bp in length and to contain 120bp direct repeats near its end. In the pathogenicity islet, in addition to the BFR-K, two putative open reading frames (ORFs) were identified; (1) the t-3 gene encoding a 396-amino-acids protein of a putative metalloprotease; (2) the third gene encoding an ORF of a 59-amino-acids protein, whose function has not yet beenn characterized. The expression of the t-3 gene in B. fragilis 419 was verified by western blot analysis.

  • PDF

Use of Terminal Restriction Length Polymorphism (T-RFLP) Analysis to Evaluate Uncultivable Microbial Community Structure of Soil

  • Chauhan, Puneet Singh;Shagol, Charlotte C.;Yim, Woo-Jong;Tipayno, Sherlyn C.;Kim, Chang-Gi;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.127-145
    • /
    • 2011
  • Various environmental ecosystems are valuable sources for microbial ecology studies, and their analyses using recently developed molecular ecological approaches have drawn significant attention within the scientific community. Changes in the microbial community structures due to various anthropogenic activities can be evaluated by various culture-independent methods e.g. ARISA, DGGE, SSCP, T-RFLP, clone library, pyrosequencing, etc. Direct amplification of total community DNA and amplification of most conserved region (16S rRNA) are common initial steps, followed by either fingerprinting or sequencing analysis. Fingerprinting methods are relatively quicker than sequencing analysis in evaluating the changes in the microbial community. Being an efficient, sensitive and time- and cost effective method, T-RFLP is regularly used by many researchers to access the microbial diversity. Among various fingerprinting methods T-RFLP became an important tool in studying the microbial community structure because of its sensitivity and reproducibility. In this present review, we will discuss the important developments in T-RFLP methodology to distinguish the total microbial diversity and community composition in the various ecosystems.

Purification and Characterization of Cop, a Protein Involved in the Copy Number Control of Plasmid pE194

  • Kwak, Jin-Hwan;Kim, Jung-Ho;Kim, Mu-Yong;Choi, Eung-Chil
    • Archives of Pharmacal Research
    • /
    • v.21 no.3
    • /
    • pp.291-297
    • /
    • 1998
  • Cop protein has been overexpressed in Escherichia coli using a T7 RNA polymerase system. Purification to apparent homogeneity was achieved by the sequential chromatography on ion exchange, affinity chromatography, and reverse phase high performance liquid chromatography system. The molecular weight of the purified Cop was estimated as 6.1 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). But the molecular mass of the native state Cop was shown to be 19 kDa by an analytical high performance size exclusion chromatography, suggesting a trimer-like structure in 50 mM Tris-HCI buffer (pH 7.5) containing 100 mM NaCl. Cop protein Was calculated to contain $39.1% {\alpha}-helix, 16.8% {\beta}-sheet$, 17.4% turn, and 26.8% random structure. The DNA binding property of Cop protein expressed in E. coli Was preserved during the expression and purification process. The isoelectric point of Cop was determined to be 9.0. The results of amino acid composition analysis and N-terminal amino acid sequencing of Cop showed that it has the same amino acid composition and N-terminal amino acid sequence as those deduced from its DNA sequence analysis, except for the partial removal of N-terminal methionine residue by methionyl-aminopeptidase in E. coli.

  • PDF

Complete genome sequence of Lactiplantibacillus plantarum ST, a potential probiotic strain with antibacterial properties

  • Yang, Shujuan;Deng, Chenglin;Li, Yao;Li, Weicheng;Wu, Qiong;Sun, Zhihong;Cao, Zhenhui;Lin, Qiuye
    • Journal of Animal Science and Technology
    • /
    • v.64 no.1
    • /
    • pp.183-186
    • /
    • 2022
  • Lactiplantibacillus plantarum (L. plantarum) ST was isolated from De'ang pickled tea in Yunnan Province, China. The genomes of strain ST were fully sequenced and analyzed using the PacBio RS II sequencing system. Our previous study has shown that L. plantarum ST is a potential probiotic strain. It had strong tolerance in the simulated artificial gastrointestinal tract, and in the antagonism tests, this strain showed strong antibacterial activity. Therefore, as a probiotic, it may be used in animal breeding. L. plantarum ST genome was composed of 1 circular chromosome and 7 plasmids. The length of the whole genome was 3320817 bp, and the annular chromosome size was 3058984 bp, guanine + cytosine (G ± C) content (%) was 44.76%, which contained 2945 protein-coding sequences (CDS). This study will contribute to a further comprehensive understanding of L. Plantarum ST at the genomic level and provide a theoretical basis for its future application in animal breeding.

Genetic Clarification of Auricularia heimuer Strains Bred and Cultivated in Korea Using the ITS and IGS1 rDNA Region Sequences

  • Nitesh Pant;HyeongJin Noh;Won-Ho Lee;Seong Hwan Kim
    • Mycobiology
    • /
    • v.51 no.2
    • /
    • pp.109-113
    • /
    • 2023
  • Auricularia is one of the broadly cultivated edible mushrooms in Korea. Most of the Korean Auricularia strains used for cultivation and breeding are known as A. auricula-judae. Recently, this species has been reported to belong to a species complex. Therefore, this study was carried out to genetically clarify the bred and cultivated Korean A. auricula-judae strains. The internal transcribed spacer (ITS) and IGS1 rDNA region sequences were determined from 10 A. auricula-judae strains by PCR and sequencing. Variation in the nucleotide sequence and sequence length of the two rDNA regions were found among the seven A. auricula-judae strains. A maximum-likelihood (ML) phylogenetic tree based on the ITS sequences clearly placed all the 10 Korean A. auricula-judae strains in the A. heimuer clade of the A. auriculajudae complex. A. heimuer is diverged from A. auricula-judae. An ML phylogenetic tree based on the IGS1 sequences revealed the close relationship between Korean A. heimuer strains to Chinese A. heimuer strains. But each strain could be distinguishable by the IGS1 sequence. Furthermore, progeny strains in the seven Korean strains could be differentiated from their parental strains by the IGS1 sequence based phylogenetic tree. Our results are expected to be used to complement the distinction of domestic Auricularia cultivars.

Single Machine Sequencing With Random Processing Times and Random Deferral Costs

  • Park, Sung H.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.4 no.1
    • /
    • pp.69-77
    • /
    • 1979
  • A single machine stochastic scheduling problem is considered. Associated with each job is its random processing time and random deferral cost. The criterion is to order the jobs so as to minimize the sum of the deferral costs. The expected sum of the deferral costs is theroretically derived under the stochastic situation for each of several scheduling decision rules which are well known for the deterministic environment. It is also shown that certain stochastic problems can be reduced to equivalent deterministic problems. Two examples are illustrated to show the expected total deferral costs.

  • PDF

Anticancer Effect of Novel Peptide from Abalone (Haliotis discus hannai) based on Next Generation Sequencing Data (차세대염기서열분석 데이터 기반으로 선별한 전복(Haliotis discus hannai) 유래 신규 펩타이드의 항암 효과)

  • Moon, Hyunhye;Hwang-bo, Jeon;Veerappan, Karpagam;Natarajan, Sathishkumar;Chung, Hoyong;Park, Junhyung
    • Journal of Marine Life Science
    • /
    • v.7 no.1
    • /
    • pp.15-20
    • /
    • 2022
  • Glioblastoma is one of the highly aggressive central nervous system tumors and it is difficult to treat owing its anatomical location. Peptides are novel class of drugs which has the potential to cross the blood brain barrier and exerts its anti-tumor activity. Here, we discovered a novel peptide from abalone (Haliotis discus hannai) next generation sequencing (NGS) data and tested its anticancer effect on glioblastoma cell line SNU-489. The anticancer activity was measured using a cytotoxicity assay in a time and dose-dependent manner. A concentration and time dependent increase in the cytotoxicity was seen in cells treated with the novel peptide. The highest cytotoxicity rate of about 67% was observed in SNU-489 cells treated with 200 µM peptide for 48 hrs. However, the cytotoxic effect was not or less observed in a normal skin cell line HaCaT at similar concentration, thus, evident of peptide's cell specific anticancer activity. In addition, the gene expression level of necroptosis-related genes was analyzed by qRT-PCR to elucidate the anticancer mechanism of the novel peptide. RIPK3 expression was significantly increased by 9.6-fold in 200 µM of novel peptide treatment group, and MLKL expression level was significantly elevated by 2-fold in 100 µM treated group compared to the control group. Therefore, this study confirmed that the novel abalone-derived peptide has anticancer potency, and it causes cancer cell death through the necroptosis mechanism. Collectively, these results suggest that the novel peptide could be candidate anticancer agent for the treatment of glioblastoma in the future.