Browse > Article
http://dx.doi.org/10.15433/ksmb.2020.12.1.050

Protoplast Production from Sphacelaria fusca (Sphacelariales, Phaeophyceae) Using Commercial Enzymes  

Avila-Peltroche, Jose (Department of Life Science, Chosun University)
Won, Boo Yeon (Department of Life Science, Chosun University)
Publication Information
Journal of Marine Bioscience and Biotechnology / v.12, no.1, 2020 , pp. 50-58 More about this Journal
Abstract
Sphacelaria is a filamentous brown algal genus that can be epibiotic on macroalgae, marine plants, and sea turtles. Its important role in benthic ecosystems, exposure to different stressors (e.g., grazing), and use as a model organism make Sphacelaria ideal for assessing physiological responses of organisms to environmental inputs. Single-cell RNA sequencing is a powerful new probe for understanding environmental responses of organisms at the molecular (transcriptome) level, capable of delineating gene regulation in different cell types. In the case of plants, this technique requires protoplasts ("naked" plant cells). The existing protoplast isolation protocols for Sphacelaria use non-commercial enzymes and are low-yielding. This study is the first to report the production of protoplasts from Sphacelaria fusca (Hudson) S.F. Gray, using a combination of commercial enzymes, chelation, and osmolarity treatment. A simple combination of commercial enzymes (cellulase Onozuka RS, alginate lyase, and driselase) with chelation pretreatment and an increased osmolarity (2512 mOsm/L H2O) gave a protoplast yield of 15.08 ± 5.31 × 104 protoplasts/g fresh weight, with all the Sphacelaria cell types represented. Driselase had no crucial effect on the protoplast isolation. However, the increased osmolarity had a highly significant and positive effect on the protoplast isolation, and chelation pretreatment was essential for optimal protoplast yield. The protocol represents a significant step forward for studies on Sphacelaria by efficiently generating protoplasts suitable for cellular studies, including single-cell RNA sequencing and expression profiling.
Keywords
Phaeophyceae; Commercial enzymes; Sphacelaria fusca; Protoplast isolation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chen, C. S and Shyu, J. F. 1995. Isolation of protoplast from four species of brown algae. Bot. Bull. Acad. Sinica 35, 95-104.
2 Matsumura, W. 1998. Efficient isolation and culture of viable protoplasts from Laminaria longissima Miyabe (Phaeophyceae). Bull. Fac. Fish. Hokkaido Univ. 49, 85-90.
3 Avila-Peltroche, J., Won, B. Y. and Cho, T. O. 2019. Protoplast isolation and regeneration from Hecatonema terminale (Ectocarpales, Phaeophyceae) using a simple mixture of commercial enzymes. J. Appl. Phycol. 31, 1873-1881.   DOI
4 Ducreux, G. and Kloareg, B. 1988. Plant regeneration from protoplast of Sphacelaria (Phaeophyceae). Planta 174, 25-29.   DOI
5 Rusig, A-M., Le Guyader, H. and Ducreux, G. 1994. Dedifferentiation and microtubule reorganization in the apical cell protoplast of Sphacelaria (Phaeophyceae). Protoplasma 179, 83-94   DOI
6 Cocking, E. C. 1972. Plant cell protoplasts - isolation and development. Annu. Rev. Plant Physiol. 23, 29-50.   DOI
7 Provasoli, L. 1968. Media and prospects for the cultivation of marine algae. In: Watanabe, A. and Hattori, A. (eds), Cultures and collections of algae. Proceedings of the U.S.-Japan Conference, Hakone, pp. 63-75.
8 Keum, Y. S. 2010. Sphacelariales, Cutleriales, Ralfsiales. In: Sook, S. (ed), Algal flora of Korea. Heterokontophyta: Phaeophyceae: Ishigeales, Dictyotales, Desmarestiales, Sphacelariales, Cutleriales, Ralfisales, Laminariales, vol. 2, National Institute of Biological Resources, Incheon, pp. 19-69.
9 Lee, S. R., Oak, J. H., Keum, Y. S., Lee, J. A. and Chung, I. K. 2011. Utility of rbcS gene as a novel target DNA region for brown algal molecular systematics. Phycol. Res. 59, 34-31.   DOI
10 Bhojwani, S. S. and Razdan, M. K. 1996. Plant Tissue Culture: Theory and Practice, a Revised Edition. Elsevier, Amsterdam, p. 338.
11 Cronshaw, J., Myers, A. and Preston, R. D. 1958. A chemical and physical investigation of the cell walls of some marine algae. Biochim. Biophys. Acta. 27, 89-103.   DOI
12 Kloareg, B. and Quatrano, R. S. 1988. Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr. Mar. Biol. Annu. Rev. 26, 259-315.
13 Salmean, A. A., Duffieux, D., Harholt, J., Qin, F., Michel, G., Czjzek, M., Willats, W. G. T and Herve, C. 2017. Insoluble ($1{\rightarrow}3$), ($1{\rightarrow}4$)-${\beta}$-D-glucan is a component of cell walls in brown algae (Phaeophyceae) and is masked by alginates in tissues. Sci. Rep. 7, 2880. doi:10.1038/s41598-017-03081-5.   DOI
14 Thibault, J.F. and Rouau, X. 1990. Studies on enzymic hydrolysis of polysaccharides in sugar beet pulp. Carbohy. Polym. 13, 1-16.   DOI
15 Collen, J., Roeder, V., Rousvoal, S., Collin, O., Kloareg, B. and Boyen, C. 2006. An expressed sequence tag analysis of thallus and regenerating protoplasts of Chondrus crispus (Gigartinales, Rhodophyceae). J. Phycol. 42, 104-112.   DOI
16 Butler, D. M., Ostgaard, K., Boyen, C., Evans, L. V., Jensen, A. and Kloareg, B. 1989. Isolation conditions for high yields of protoplasts from Laminaria saccharina and L. digitata (Phaeophyceae). J. Exp. Bot. 40, 1237-1246   DOI
17 Kloareg, B., Polne-Fuller, M. and Gibor, A. 1989. Mass production of viable protoplasts from Macrocystis pyrifera. Plant Sci. 62, 105-112.   DOI
18 Huang, L., Zhou, J., Li, X., Peng, Q., Lu, H. and Du, Y. 2013. Characterization of a new alginate lyase from newly isolated Flavobacterium sp. S20. J. Ind. Microbiol. Biotechnol. 40, 113-122.   DOI
19 Xiaoke, H., Xiaolu, J. and Huashi, G. 2003. Isolation of protoplast from Undaria pinnatifida by alginate lyase digestion. J. Ocean. Univ. Qingdao. 2, 58-61.   DOI
20 Burns, A.R., Oliveira, L. and Bisalputra, T. 1984. A cytochemical study of cell wall differentiation during bud initiation in the brown alga Sphacelaria furcigera. Bot. Mar. 27, 45-54.
21 Roeder, V., Collen, J., Rousvoal, Corre, E., Leblanc, C. and Boyen, C. 2005. Identification of stress gene transcripts in Laminaria digitata (Phaeophyceae) protoplast cultures by expressed sequence tag analysis. J. Phycol. 41, 1227-1235.   DOI
22 Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402.   DOI
23 Keum, Y. S., Oak, J. H., Draisma, S. G. A., Prud'homme van Reine, W. F. and Lee, I. K. 2005. Taxonomic reappraisal of Sphacelaria rigidula and S. fusca (Sphacelariales, Phaeophyceae) based on morphology and molecular data with special reference to S. didichotoma. Algae 20, 1-13.   DOI
24 Piazzi, L., Balata, D. and Ceccherelli G. 2015. Epiphyte assemblages of the Mediterranean seagrass Posidonia oceanica: an overview. Mar. Ecol. 37, 3-41.   DOI
25 Varisco, M., Martin, L., Zaixso, H., Velasquez, C. and Vinuesa, J. 2015. Food and habitat choice in the spider crab Leucippa pentagona (Majoidea: Epialtidae) in Bahia Bustamante, Patagonia, Argentina. Scientia Marina 79, 107-116.   DOI
26 Velasco-Charpentier, C., Pizarro-Mora, F., Estrades, A. and Velez-Rubio, G. M. 2016. Epibiota of juvenile Hawksbill Sea Turtles Eretmochelys imbricata stranded in the coast of Rocha Department, Uruguay. Rev. Biol. Mar. Oceanogr. 51, 449-453.   DOI
27 Pavia, H., Carr, H. and Åberg, P. 1999. Habitat and feeding preferences of crustacean mesoherbivores inhabiting the brown seaweed Ascophyllum nodosum (L.) Le Jol. and its epiphytic macroalgae. J. Exp. Mar. Biol. Ecol. 236, 15-32.   DOI
28 Bustamante, D. E., Won, B. Y. and Cho, T. O. 2016. The conspecificity of Pterosiphonia spinifera and P. arenosa (Rhodomelaceae, Ceramiales) inferred from morphological and molecular analyses. Algae 31, 105-115.   DOI
29 Destombe, C. and Douglas, S. E. 1991. Rubisco spacer sequence divergence in the rhodophyte alga Gracilaria verrucosa and closely related species. Curr Genet. 19, 395-398.   DOI
30 Benet, H., Gall, E. Ar, Asensi, A. and Kloareg, B. 1997. Protoplast regeneration from gametophytes and sporophytes of some species in the order Laminariales (Phaeophyceae). Protoplasma. 199, 39-48.   DOI
31 Coelho, S. M., Scornet, D., Rousvoal, S., Peters, N., Dartevelle, L., Peters, A. F. and Cock, J. M. 2012. Isolation and regeneration of protoplast from Ectocarpus. Cold Spring Harb. Protoc 2012, 361-364. doi: 10.1101/pdb.prot067959   DOI
32 Abramoff, M. D., Magalhães, P. J. and Ram, S. J. 2004. Image processing with Image J. Biophoton Int. 11, 36-42.
33 Venables, W. N. and Ripley, B. D. 2002. Modern Applied Statistics with S. 4th edition. Springer, NewYork. http://www.stats.ox.ac.uk/pub/MASS4.
34 Ferrari, S. L. P. and Cribari-Neto, F. 2004. Beta regression for modelling rates and proportions. J. App. Stat. 31, 799-815.   DOI
35 Hernandez, J. C., Gil-Rodriguez, M. A., Herrera-Lopez, G. and Brito, A. 2007. Diet of the "key herbivore" Diadema antillarum in two contrasting habitats in the Canary Islands (Eastern-Atlantic). Vieraea 35, 109-120.
36 Karez, R., Engelbert, S. and Sommer, U. 2000. 'Coconsumption' and 'protective coating': two new proposed effects of epiphytes on their macroalgal hosts in mesograzer‐epiphyte‐host interactions. Mar. Ecol. Prog. Ser. 205, 85-93.   DOI
37 Cribari-Neto, F and Zeileis, A. 2010. Beta regression in R. J. Stat. Softw. 34, 1-24.
38 Sellke, T., Bayarri, M. J. and Berger, J. O. 2001. Calibration of p values for testing precise null hypotheses. Am. Stat. 55, 62-71.   DOI
39 Viejo, R. and Aberg, P. 2003. Temporal and spatial variation in the density of mobile epifauna and grazing damage on the seaweed Ascophyllum nodosum. Mar. Biol. 142, 1229-1241.   DOI
40 Arrontes, J. 1990. Diet, food preference and digestive efficiency in intertidal isopods inhabiting macroalgae. J. Exp. Mar. Biol. Ecol. 139, 231-249.   DOI
41 Whalen, M. A., Emmett, J. D. and Grace, J. B. 2013. Temporal shifts in top-down vs. bottom-up control of epiphytic algae in a seagrass ecosystem. Ecology 94, 510-520.   DOI
42 Raghukumar, C. 1987. Fungal parasites of marine algae from Mandapam (South India). Dis. Aquat. Org. 3, 137-145.   DOI
43 Longtin, C. M., Scrosati, R. A., Whalen, G. B. and Garbary, D. J. 2009. Distribution of algal epiphytes across environmental gradients at different scales: intertidal elevation, host canopies, and host fronds. J. Phycol. 45, 820-827.   DOI
44 Dworetzky, B., Klein, R. M. and Cook, P. W. 1980. Effect of growth substances on "apical dominance" in Sphacelaria furcigera (Phaeophyta). J. Phycol. 16, 239-242.   DOI
45 Charrier, B., Bail, A. L. and de Reviers, B. 2012. Plant Proteus: brown algal morphological plasticity and underlying developmental mechanisms. Trends Plant Sci. 17, 468-477.   DOI
46 Shulse, C. N, Cole, B.J, Ciobanu, D., Lin, J., Yoshinaga, Y., Gouran, M., Turco, G. M., Zhu, Y., O'Malley, R. C., Brady, S. M. and Dickel, D. E. 2019. High-throughput single-cell transcriptome profiling of plant cell types. Cell Rep. 27, 2241-2247.   DOI
47 Bogaert, K. A., Arun, A., Coelho, S. M. and De Clerck, O. 2013. Brown Algae as a Model for Plant Organogenesis. In: De Smet, I. (ed), Plant Organogenesis: Methods and Protocols, Methods in Molecular Biology. Springer Science + Business Media, New York, vol. 959, pp. 97-125.
48 Imadi, S. R., Kazi, A. G., Ahanger, M. A., Gucel, S. and Ahmad, P. 2015. Plant transcriptomics and responses to environmental stress: an overview. J. Genet. 94, 525-537.   DOI
49 Hwang, B., Lee, J. H. and Bang, D. 2018. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp. Mol. Med 50, 96. https://doi.org/10.1038/s12276-018-0071-8   DOI
50 Reddy, C. R. K., Gupta, M. K., Mantri, V. A. and Bhavanath, J. 2008. Seaweed protoplast: status, biotechnological perspectives and need. J. Appl. Phycol. 20, 619-632.   DOI
51 Efroni, I. and Birnbaum, K. D. 2016. The potential of single-cell profiling in plants. Genome Biol. 17, 65. https://doi.org/10.1186/s13059-016-0931-2.   DOI
52 Burris, K P., Dlugosz, E. M., Collins, A. G., Stewart, C. N. and Lenaghan, S. C. 2016. Development of a rapid, low-cost protoplast transfection system for switchgrass (Panicum virgatum L.). Plant Cell Rep. 35, 693-704.   DOI
53 Fujimura, T., Kawai, T., Kajiwara, T., Ishida, Y. 1994. Volatile components in protoplast isolated from the marine brown alga Dictyopteris prolifera (Dictyotales). Plant Tissue Cult. Lett. 11, 34-39.   DOI
54 Fisher, D. D and Gibor, A. 1987. Production of protoplasts from the brown alga, Sargassum muticum (Yendo) Fensholt (Phaeophyta). Phycologia 26, 488-495.   DOI