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Single Machine Sequencing With Random
Processing Times and Random Deferral Costs
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ABSTRACT

A single machine stochastic scheduling problem is considered. Associated
with each job is its random processing time and random deferral cost. The
criterion is to order the jobs so as to minimize the sum of the deferral costs,
The expected sum of the deferral costs is theroretically derived under the
stochastic situation for each of several scheduling decision rules which are well
known for the deterministic environment, It is also shown that certain stochastic
problems can be reduced to equivalent deterministic problems. Two examples are
illustrated to show the expected total deferral costs,

INTRODUCTION

Much of the literature on single machine sequencing considered the problems of scheduling
a set of jobs involving fixed and known processing times, linear deferral costs (or waiting
costs) and due-dates, However, in real life, the time taken to complete a job on a machine
is almost invariably random and, frequently, the deferral cost of a job may not be completely
specified with certainty.

Several authors [1,2, 3, 6] have considered some stochastic situations on a single machine,
Rothkoph (6] and Banerjee [1] discussed scheduling problems with random processing times;
Crabill and Maxwell [3] studied the cases of random processing times and random due-dates;
and a comprehensive study of stochastic environments is done by Conway et al, (2], in whicha
brief discussion of the case when the processing times and deferral costs are random can be found.

The problem to be discussed in this paper is that of scheduling n jobs on a single machine,
Associated with each job is its random processing time and random deferral cost, and the
optimization criterion is the minimization of the sum of the deferral costs of n jobs, We
assume that all jobs are independent and available for processing at time zero, and setup
times for the jobs are independent of job sequence and are included in processing times, Also
we assume that the machine is continuously available from time zerc until all jobs have been
completed and that once processing begins on a job, it is processed to completion without
interruption. For brevity probability density functin will be henceforth denotep by p.d.f.,
and cumulative distribution function will be denoted by c.d.f,,
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“The rotation to be often used below is
P;=a non-negative random variable representing the processing time of job 7, i=1,2, -, #;
U;=a non-negative random variable representing the deferral cost of fob 7, i=1,2,....,n;
gi(p)=the p.d.f. of Py
h; (w) =the p.d. f. of U
G;(p) =the c.d. f. of P;;
H; (u) =the ¢.d. f. of U;
(i) =the job scheduled to be drocsssed in the #t* position in sequence, For emample, if
jobs 1,2, 3 are scheduled in the order 3,1,2, then (1)=3, (2)=1, and (3)=2.
F,=the flow-time (or completion time) of the job in it* position of an an arbitrary
sequence, i.e., F=Zfj=a Pu.
If job i is completed at time F;, then its deferral cost is U;F; and the total deferral cost
©f a schedule is given by
szﬁ U(i>F<i>=£3 U(i)i' P, or = ‘Z UirPiy. oy
1= i=1 51 i=1 =1
«Obviously the total deferral cost C is a random variable and, before the execution of the
jobs, C is unknown, When both processing times and deferral costs are deterministic and
known, it was proved by Smith [8] that the total deferral cost is minimized by scheduling
‘the jobs in order of increasing ratio of P;/U;. Rothkoph (6] extends this result to the case
when the processing times are random and the deferral costs are known. He shows that the
.expected total deferral cost is minimized by scheduling the jobs in increasing order of E(F;)/

U; where E(P;) means th expected value of P;.

The main purpose of this paper is to theoretically derive the expected total deferral costs
under several different situations discussed below when the processing times and the deferral
costs are random. For convenience, the following work is divided into two parts, The first
part is a special case in that the p; are independent identically distributed (will be referred
to i,i,d.) random variables from a common p.d. f, g(p) and, similarly, the U; are from a
<common p.d, f. h(u). The second part is the general case in that each job i draws its P;
and U; from its own g;(p) and k; (%), respectively.

FROM COMMON PROBABILITY DENSITY FUNCTIONS

Suppose that the P; are i.i.d. random variables from p.d. f. g(p) and the U; are i.i.d.
random variables from p.d. f. h(u). We also assume that the P; and U; are non-negative
and statistically indepent. Then Pi, P,,...., P, may be regarded as a random sample of
size n from a distribution of the random variable p having p.d.f. g(p) and Uy, Us,,,,. U,
as a random sample from a distribution of the random variable U whose p.d.f. is h(u).

Suppose the jobs are arranged in the following way they are processed in that order:

1) random sequencing,

2) Py<LP:»<. .. <P,

3) Un=Ug=... 22U,

Since a useful standard of comparison may be provided by random sequencing of the jobs,



random sequencing is also considered.
Let E(C;), i=1,2,3 and 4, denote the expected total deferral cost for the it4 case listed
above, First of all, if the jobs are sequenced at random, it is readily shown that

E(C =E<>::1 UG 7-1’ Pey)

=E(EP Zi

=n(n+1) E(U) E(P) /2, @
since the jobs are assigned to a position in sequence in a manner that does not depend on
the values of processing time and deferral cost. A similar result can also be found in Conway
et al, (2]
Secondly, if the jobs are arranged so that
Puy<Pp<. .. <P, then

E(Cy) ZE(% U(i)éi P,
=

i=1

=E(U)é(n——i+1)E(P<i>). 3)

Note that Py, is it* order statistic of the random sample Py, P, .,..,P, From the theory
of order statistics (for a reference see Hogg and Craig [4)), the p.d.f. of the it order
statistic for the processing time is given by

Si )= =55 1 =77 (G () FTI—G (5) g (1),

where F(p) is the c.d. f. of the processing time p, The expected value of the i# ordered
processing time is

E(par) = =psi (5) dp.

Since it is not immediately clear that E(C,) is less than E(C;), we obtain the second term
in (3) in a simpler form,

£ (r—=i+1) E(Pe)

(g " pnl =101 — =i
=Z it 1) | g (G (I -G () g (9) dp

_ (=, % (m—i4+1)n] i~ n—i
= S T TG (O I 1-G () g (D) dp

(" st (—j—1) +1) (n=1)! 1 (g ity
_jonpjzzo I T (G ) VI1=G (5) 1~i'g (p)dp

=["ml -1 1~G () +12 (9)dp
=n[nE(p) — (n—1) W,] @)
whereWp:j:pG (p) g (p)dp. Substituting (4) into(3), the expected total deferral cost may



be written as
EC)=EU)n(mEP)— (n—1) W,]
=n(n+1)E(U)E(P)/2—n(n-1)E(U) (W,—E(P)/2). (5)

The second term on the right in (5) is always positive, since it can be shown (for proof see
Appendix 1) that W,>E(P)/2 for any non-degenerate p.d.f. g(p). Therefore, it is clear
that taking the jobs in order of increasing processing times will result in a smaller total
deferral cost than would be obtained in a random sequence,

Thirdly, if the jobs are arranged so that Ug,>Uqgy>. .. >U,,,, the expected total deferral
cost may be found by a similar argument made in (2) through (5). The complete derivation
is not shown here, but one can show that

E(C)=E (X Unx Pp)
i= =

—E(P)E(ZiUs)

=n(n+1) E(U)EP)/2—nn—-1)EP) (W,—E(U)/2), (6)
where Wu:j:uH (u) h(w)du, and Uy, is the (n—i-+1)¢* order statistic of the random sample

Uy, U,,..., U, Comparing E(C;) and E(C;), it is obvious that taking the jobs in order of
decreasing deferral costs will, in general, result in a smaller total deferral cost than would
be obtained in a random sequence, However, there is not clear-cut choice between E(C,) and
E(Cs), since the difference E(C,) —E (Cs) can take on a positive or negative value depending
on the p.d. f. g(p) and h(n). If g(p) and h(u) are given, of course, it is possible to find
the better choice,
Suppose the jobs are sequenced so that
Pay/ Uy <P/ Un<. .. <P/ Uap. 7

It would be much more difficult to derive the expecied total deferral cost for this case,
because P, is not necessarily the it ordered processing time and Uy, is not necessarily the
(n—i+1)th ordered deferral cost, although P /U, is the itk order statistic of the random
sample: Py/Uy, Py/Us, ..., P/ U,.

EXAMPLE |

Suppose we have a five job sequencing problem on a single machine, It is assumed that
the p.d. f. of the processing time P is a Gamma distribution with mean 3 minutes,
g (p)=pre2/2, p=>0,
and the p.d. f of the deferral cost U is also a Gamma distribution with mean $ 4/min,
k (26) =ule™#/6, u>0.
The expected total deferral cost for a random sequence is from (2)
EC)=nn+1)EU)EP) /2= 5180
since n=5, E(U)=4 and E(P)=3,
In order to show E (C,) and E (C;), the expected values of order statistics, P, and U,
are obtained from Sarah and Greenberg (7). They are



E (P(l)) =]1.321 E(Uu)) =6.521

E (Py) =2.045 E(Ug)) =4. 805

E(Pc) =2.768  E(Ucay) =3.767

E(Puy) =3.668 E(Uyy) =2.905

E(Psy) =5.197 E(Ucsy) =2. 002.
Therefore, from (3) and (6) it can be shown that

E(Cy)=E(U) _f?l(n—z'+ 1) EPyy) =$142.49

and

E(Cy)=E(P)E (éliU(i,) =$147. 19.

FROM SEPARATE PROBABILITY DENSITY FUNCTIONS

The model considered in this section is that each iob i draws its processing time P; from
separate g;(p) and its deferral cost U; from h;(#). It is also assumed that the processing
times and the deferral costs are stochastically independent, Since each job may have a
different a priori estimate of its processing time, deferral cost or ratio P;/U; a scheduling
decision can be made based on the @ priori estimates, This is not an unrealistic situation,
for one often uses the past information for similar jobs when the actual processing time or
deferral cost of a specific job is not known,

Suppose that E(P;), E(U;) and E(P;/U;) for alli are known and that the jobs are
sequenced so that

1) random sequencing,

2) E(Py)KEPw) =...<EPwuy),

3) E(Uw) ZE(Uwm) =... 2E (Uy),

4) E(Pay/Uw)) <E(Pay/U) <..o E(Pins/ U eay)
or

5) E(Puy)/E(Uyy) <E(Pw)/E(Ux) <. .. <E(Py/E(Uiwy) .

Let F(Py, Py, ..., Py tty, 45, ...%u,) be the joint c.d.f. of the P; and U; The the total
deferral cost of an arbitrary sequence is given by

TC=£ U(,-)Z,,‘ P,
i=1 =1
and the expected value of the total deferral cost would be

E(TC) ZL .. jwé 21 UiyPy@F (P1, Dav o v Dy i1, U, o L Uy)

0 5=1 i=

%

=z = L .. fo UinPihdF (D1, ..., Datha, Us, . ., )

i=1 j=1

=== EwP»)



n i

E(Ug) E(Pj) or >_:”i E(U(i))_‘Z_JlE(P(ﬁ), 8
1= =

i=1 j=1
where the equality in (8) comes from the fact that the P, and Uy, are stochastically
independent,

Let E(TC;), i=1,2,...,5, denote the expected total deferral cost for the it* scheduling
decision listed above. First of all, consider the case that the jobs are sequenced completely

at random, Since position 7 is equally likely to be occupied by any one of the % jobs,
E(Ua) =E(E U /n=5 E(Uy) /n=u*
t 2nd i e

and

E(Pgy) =E (X P) /n=é E(P) /n=p*,

i=1

for i=1,2,....,n. Therefore. the expected total deferral cost for random sequencing will be

E(TC) =% 3 E(Ua) E (P
=2 =

=wZ (n—j+1 E (Py), ©)
=

where E(P;;) is the expected value of the processing time P; of job { whose position in
sequence is j, i.e., (j)=i.
Thirdly, if the jobs are processed in order of decreasing expected deferral costs, then

E(TCy) == = E(Uqy) E(Pp)

i=1 j=1
=P*§1 iE(Ugy). (10}
Fourth, if the jobs are sequenced in increasing order of E(P;/U;), then
E(TCy =_>_:i E E(Ua) E (P, (11)
i=1 j=
where E(Uy,) and E(P;) are the expected values of the P; and U; of job j whose position
in sequence is i, i.e., (f)=j.

Fifthly, if the jobs are processed in increasing order of E(P;)/E(U;), then E(TC;) has
the same form as E(TC,) in (11). However, the order of jobs provided by the 5¢* scheduling
scheme is not necessarily equal to that provided by the 4¢* one, since FE(P;/U;) is not
exactly equal to E(P;)/E(U;). In fact, E(P;/U;) is slightly greater than E(P;)/E (U;). For
this discussion see Appendix 2. But, for many probability distributions commeonly used in real
life, it is unlikely that the both schduling decisions would propose different sequences, mainly
because a consistent bias in the estimates of E (P;/U;) for all { would have no significant
effect on the order of jobs.

We have studied the expected total deferral costs for various scheduling schemes, Which

scheduling rule leads to the optimal schedule in the stochastic situation? That is, which one
among E(TC;), i=1,2,...,5, is the minimum? Since, in the deterministic case the total



deferral cost,

TC=% £ UsPop,

i=1 j=1

‘would be minimized by processing the jobs in increasing P,/U, order as shown by Smith
/[8], processing the jobs in increasing orer of E(P;,) /E (Uy,) clearly minimize

E(TO)=% le E(Ua) E(Pyy).
“This is a simple, but significant result, since it is the probabilitic counterpart of the optimal
‘rule in the deterministic situation, Note that it reduces the stochastic problem to the
-equivalent deterministic problem,

An important observation to be made is that, if the P; and U; are not stochastically

dndependent, the equality in (8) does not hold true, and E(TC) in (8) should be written as

n i
E(TC) =E(:£..; z UirsPi).
i=1 j=
Since (_F‘_.ﬂ1 )f:l UiyP¢;y) is minimized by processing the jobs in increasing P/ Uy, order, a
i=1 j=

-probabilistic consequence is that E(_% ﬁ: Ui,P¢j5) would be minimized if the jobs are
i=1 j=1

:sequenced in increasing order of E (Py/Usyy).

EXAMPLE I1

Suppose we have 3 jobs whose processing times and deferral costs are Gamma-distributed,
8
Gixla, B =% raryp1 >
xla, 8) 7 (8) , a8, x>0. (12)

For brevity, assume a=1/2 for the disributions of all P; and U;, The 3 values are shown in
“Table 1.

B values

P; (minutes) U; ($ /min)
job 1 9 10
job 2 5 9
job 3 7 14
Table 1

Since E(x) for the Gamma variable in (12) is E(x) =8/a, it can be easily shown that
E(P) =18, E(Py)=10, E(Py) =14,
E(U) =20, E(U;)=18, E(U)=28.
An general, if X; is a Gamma variable with p.d.f. G(x|e, 1) and X, is another Gamma
variable with G (x|« §z), then the p.d.f. of the ratio of two independent Gamma variables,

R=X1/X;, is (see Rao [5])



. _ BBy bl
F(r1By, B2 = [.(‘31;1 (52) (A+7) 86

with E(R)=01/(3;—1). Therefore,
E(Py/U) =1, E(Py/U,)=5/8 and E (Py/U3) =7/13.
The expected total deferral cost for random sequencing in (9) will be
E(TC)=nn+1u*p*/2=%1, 848
since n=3, #*=22 and p*=14. If the jobs are sequenced in order of increasing expected

processing times, then(1) =2, (2)=3 and (3) =1 with
E(TCy =w*E (n—j+1) E (Pip) = $ 1,672
=

If the jobs are proessed in order of decreasing expected deferral costs, then (1)=3, (2)=1.
and (3) =2 with

E(TCs) =p*§1 iE(Ug) =$ 1, 708.

Lastly, if the jobs are sequenced in increasing order of E(P;/U;) or E(P;)/E(U;), then.
(1)=3, (2)=2 and (3) =1, and the expected total deferral cost would be

E(TC, or TCy) =3 >:1 E(Uu) E(Pgy) =$ 1, 664.
z

=1

APPENDIX 1
We wan to show that W,>E(p)/2, that is

(756 (01 g (2 dp=1/2 g ) dp. W

Let a=Sup{p;G(p) =0} and b=inf{p:G (p)=1}. Then the functionG:[a, 6]—(0,1] has an.
inverse, say M:(0, 1]—[a, 1. Now in equation (1), change variables according to y=G (p)
or p=M(y). Note that G(p) and M(y) are increasing functions, Then

j:pG (D& (p) dp:sz () ydy,
and 1/2{ g (»)dp=1/2{ M(3)dy.
So we want to prove

j:M (» (y—1/2)dy=>0. ()

1
Now j\1:S2+§1- In the first integral put y—1/2=-Z; in the second, y—1/2=Z. Thus.
[} (1] 1
z

inequality (2) reduces to

jf{Mu/HZ) ~M (1/2-2)1Z dZ>0. )
The truth of inequality (3) is self-evident,
APPENDIX 2
We want to show E(x/y) for two non-negative and independent random variables x and



. Let E(x)=x* and E (y) =y*. By a Taylor series expansion in two variables, x/y may be
expressed as
X/ y=X*y*+ (x—=x%) /y*—x* (y—3%) / (") 21— (x—x%) (y—3*)/ (¥*)?
+X* (y—3N) 2/ (9%) 34 (x—x%) (y=35) 2/ (¥*)3—x* (y—y") 3/ (9 4+. ...
Taking expectations, we can obtain
E(x/y) =x*/y*+x*E (y—3%)%/ (y*)3—x*E(y—y*)3/ (y*)4+. .,

=x*/y*+ (@*/y) E|Z (=D (3—37 ¥/ (5°)1]

= (/3 E[E (5%~ /1]

= (x*/y*) E[1/ (1~ (y*—y) /y*]

= (x*/y*) E(y*/y)

=x*/y*+ 2 E1/y) —1/y*].
From Jensen’s inequality E (1/y) >1/9* (with equality only for a degenerate distribution of
v), which means that E (x/y) is slightly greater than x*/y* for a non-degenerate distribution
of y.
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