DOI QR코드

DOI QR Code

Use of Terminal Restriction Length Polymorphism (T-RFLP) Analysis to Evaluate Uncultivable Microbial Community Structure of Soil

  • Chauhan, Puneet Singh (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Shagol, Charlotte C. (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Yim, Woo-Jong (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Tipayno, Sherlyn C. (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Kim, Chang-Gi (Bio-Evaluation Center, KRIBB) ;
  • Sa, Tong-Min (Department of Agricultural Chemistry, Chungbuk National University)
  • Received : 2011.01.20
  • Accepted : 2011.02.21
  • Published : 2011.02.28

Abstract

Various environmental ecosystems are valuable sources for microbial ecology studies, and their analyses using recently developed molecular ecological approaches have drawn significant attention within the scientific community. Changes in the microbial community structures due to various anthropogenic activities can be evaluated by various culture-independent methods e.g. ARISA, DGGE, SSCP, T-RFLP, clone library, pyrosequencing, etc. Direct amplification of total community DNA and amplification of most conserved region (16S rRNA) are common initial steps, followed by either fingerprinting or sequencing analysis. Fingerprinting methods are relatively quicker than sequencing analysis in evaluating the changes in the microbial community. Being an efficient, sensitive and time- and cost effective method, T-RFLP is regularly used by many researchers to access the microbial diversity. Among various fingerprinting methods T-RFLP became an important tool in studying the microbial community structure because of its sensitivity and reproducibility. In this present review, we will discuss the important developments in T-RFLP methodology to distinguish the total microbial diversity and community composition in the various ecosystems.

Keywords

References

  1. Abdo, Z., U.M., Schutte, S.J. Bent, C.J. Williams, L.J. Forney, and P. Joyce. 2006. Statistical methods for characterizing diversity of microbial communities by analysis of terminal restriction fragment length polymorphisms of 16S rRNA genes. Environ. Microbiol. 8:929-938. https://doi.org/10.1111/j.1462-2920.2005.00959.x
  2. Abell, G.C., A.T. Revill, C. Smith, A.P. Bissett, J.K. Volkman, and S.S. Robert. 2010. Archaeal ammonia oxidizers and nirStype denitrifiers dominate sediment nitrifying and denitrifying populations in a subtropical macrotidal estuary. ISME J. 4:286-300. https://doi.org/10.1038/ismej.2009.105
  3. Acinas, S.G., L.A. Marcelino, V. Klepac-Ceraj, and M.F. Ploz. 2004. Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J. Bacteriol. 168:2629-2635.
  4. Amann, R.I., W. Ludwig, and K. Schleifer. 1995. Phlyogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143-169.
  5. Anderson, I.C., B.A. Bastias, D.R. Genney, P.I. Parkin, and J.W. Cairney. 2007. Basidiomycete fungal communities in Australian sclerophyll forest soil are altered by repeated prescribed burning. Mycol. Res. 111:482-486. https://doi.org/10.1016/j.mycres.2007.02.006
  6. Ayala-del-Rio, H.L., S.J. Callister, C.S. Criddle, and J.M. Tiedje. 2004. Correspondence between community structure and function during succession in phenol- and phenol-plustrichloroethene-fed sequencing batch reactors. Appl. Environ. Microbiol. 70:4950-4960. https://doi.org/10.1128/AEM.70.8.4950-4960.2004
  7. Becker, R., P. Boger, R. Oehlmann, and A. Ernst. 2000. PCR bias in ecological analysis: a case study for quantitative Taq nuclease assays in analyses of microbial communities. Appl. Environ. Microbiol. 66:4945-4953. https://doi.org/10.1128/AEM.66.11.4945-4953.2000
  8. Becker, R., U. Behrendt, B. Hommel, S. Kropf, and A. Ulrich. 2008. Effects of transgenic fructan-producing potatoes on the community structure of rhizosphere and phyllosphere bacteria. FEMS Microbiol. Ecol. 66:411-425. https://doi.org/10.1111/j.1574-6941.2008.00562.x
  9. Behr, S., M. Matzig, A. Levin, H. Eickhoff, and C. Heller. 1999. A fully automated multicapillary electrophoresis device for DNA analysis. Electrophoresis. 20:1492-1507. https://doi.org/10.1002/(SICI)1522-2683(19990601)20:7<1492::AID-ELPS1492>3.0.CO;2-V
  10. Bent, S.J. and L.J. Forney. 2008. The tragedy of the uncommon: understanding limitations in the analysis of microbial diversity. ISME J. 2:689-695. https://doi.org/10.1038/ismej.2008.44
  11. Berg, G., A. Krechel, M. Ditz, R.A. Sikora, A. Ulrich, and J. Hallmann. 2005. Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol. Ecol. 51:215-229. https://doi.org/10.1016/j.femsec.2004.08.006
  12. Blackwood, C.B., D. Huddleston, D.R. Zak, and J.S. Buyer. 2007. Interpreting ecological diversity indices applied to terminal restriction fragment length polymorphism data: insights from simulated microbial communities. Appl. Environ. Microbiol. 73:5276-5283. https://doi.org/10.1128/AEM.00514-07
  13. Blaut, M., M.D. Collins, G.W. Welling, J. Dore, J. van Loo, and W. de Vos. 2002. Molecular biological methods for studying the gut microbiota: the EU human gut flora project. British J. Nut. 88:S203-S211.
  14. Bowman, J.P. and R.D. McCuaig. 2003. Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment. Appl. Environ. Microbiol. 69:2463-2483. https://doi.org/10.1128/AEM.69.5.2463-2483.2003
  15. Braker, G., H.L. Ayala-del-Rio, A.H. Devol, A. Fesefeldt, and J.M. Tiedje. 2001. Community structure of denitrifiers, bacteria, and archaea along redox gradients in Pacific Northwest marine sediments by terminal restriction fragment length polymorphism analysis of amplified nitrite reductase (nirS) and 16S rRNA genes. Appl. Environ. Microbiol. 67:1893-1901. https://doi.org/10.1128/AEM.67.4.1893-1901.2001
  16. Brown, M.V., M.S. Schwalbach, I. Hewson, and J.A. Fuhrman. 2005. Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplification products. Environ. Microbiol. 7:1466-1479 https://doi.org/10.1111/j.1462-2920.2005.00835.x
  17. Brunk, C.F., E. Avaniss-Aghajani, and C.A. Brunk. 1996. A computer analysis of primer and probe hybridization potential with bacterial small-subunit rRNA sequences. Appl. Environ. Microbiol. 62:872-879.
  18. Cadillo-Quiroz, H., J.B. Yavitt, S.H. Zinder, and J.E. Thies. 2009. Diversity and community structure of Archaea inhabiting the rhizoplane of two contrasting plants from an acidic bog. Microb. Ecol. 59:757-767.
  19. Chan, O.C., X. Yang, Y. Fu, Z. Feng, L. Sha, P. Casper, and X. Zou. 2006. 16S rRNA gene analyses of bacterial community structures in the soils of evergreen broad-leaved forests in south-west China. FEMS Microbiol. Ecol. 58:247-259. https://doi.org/10.1111/j.1574-6941.2006.00156.x
  20. Chen, Z., X. Luo, R. Hu, M. Wu, J. Wu, and W. Wei. 2010. Impact of long-term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil. Microb. Ecol. 60:850-861. https://doi.org/10.1007/s00248-010-9700-z
  21. Conn, V.M. and C.M. Franco. 2004. Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA clones. Appl. Environ. Microbiol. 70:1787-1794. https://doi.org/10.1128/AEM.70.3.1787-1794.2004
  22. Cordova-Kreylos, A.L., Y.P. Cao, P.G. Green, H.M. Hwang, K.M. Kuivila, M.G. LaMontagne, L.C. Van De Werfhorst, P.A. Holden, and K.M. Scow. 2006. Diversity, composition, and geographical distribution of microbial communities in california salt marsh sediments. Appl. Environ. Microbiol. 72:3357-3366. https://doi.org/10.1128/AEM.72.5.3357-3366.2006
  23. Crosby, L.D. and C.S. Criddle. 2003. Understanding bias in microbial community analysis techniques due to rrn operon copy number heterogeneity. Biotechniques. 34:790-764.
  24. Culman, S.W., J.M. Duxbury, T.G. Lauren, and J.E. Thies. 2006. Microbial community response to soil solarization in Nepal's rice-wheat cropping system. Soil Biol. Biochem. 38:3359-3371. https://doi.org/10.1016/j.soilbio.2006.04.053
  25. daCJesus, E., T.L. Marsh, J.M. Tiedje, and F.M. deSMoreira. 2009. Changes in land use alter the structure of bacterial communities in Western Amazon soils. ISME J. 3:1004-1011. https://doi.org/10.1038/ismej.2009.47
  26. Dedysh, S.V., T. Pankratov, S.E. Belova, I.S. Kulichevskaya, and W. Liesack. 2006. Phylogenetic analysis and in situ identification of bacteria community composition in an acidic Sphagnum peat bog. Appl. Environ. Microbiol. 72:2110-2117. https://doi.org/10.1128/AEM.72.3.2110-2117.2006
  27. Derakshani, M., T. Lukow, and W. Liesack. 2001. Novel bacterial lineages at the (sub) division level as detected by signature nucleotide-targeted recovery of 16S rRNA genes from bulk soil and rice roots of flooded rice microcosms. Appl. Environ. Microbiol. 67:623-631. https://doi.org/10.1128/AEM.67.2.623-631.2001
  28. Devare, M.H., C.M. Jones, and J.E. Thies. 2004. Effect of Cry3Bb transgenic corn and tefluthrin on the soil microbial community: biomass, activity, and diversity. J. Environ. Qual. 33:837-843. https://doi.org/10.2134/jeq2004.0837
  29. Dollhopf, S.L., S.A. Hashsham, and J.M. Tiedje. 2001. Interpreting 16S rDNA T-RFLP data: application of selforganizing maps and principal component analysis to describe community dynamics and convergence. Microb. Ecol. 42:495-505 https://doi.org/10.1007/s00248-001-0027-7
  30. Donis-Keller, H., A.M. Maxam, and W. Gilbert. 1977. Mapping adenines, guanines and pyrimidines in RNA. Nucleic Acids Res. 4:2527-2538. https://doi.org/10.1093/nar/4.8.2527
  31. Duineveld, B.M., G.A. Kowalchuk, A. Keijzer, and J.D. van Elsas 2001. Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA. Appl. Environ. Microbiol. 67:172- 178. https://doi.org/10.1128/AEM.67.1.172-178.2001
  32. Dunbar, J., L.O. Ticknor, and C.R. Kuske. 2000. Assessment of microbial diversity in four southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis. Appl. Environ. Microbiol. 66:2943-2950. https://doi.org/10.1128/AEM.66.7.2943-2950.2000
  33. Dunbar, J., L.O. Ticknor, and C.R. Kuske. 2001. Phylogenetic specificity and reproducibility and new method for analysis of terminal restriction fragment profiles of 16S rRNA genes from bacterial communities. Appl. Environ. Microbiol. 67:190-197. https://doi.org/10.1128/AEM.67.1.190-197.2001
  34. Dunbar, J., S.M. Barns, L.O. Ticknor, and C.R. Kuske. 2002. Empirical and theoretical bacterial diversity in four Arizona soils. App. Environ. Microbiol. 68:3035-3045. https://doi.org/10.1128/AEM.68.6.3035-3045.2002
  35. Eckburg P.B., E.M. Bik, C.N. Bernstein, E. Purdom, L. Dethlefsen, M. Sargent, S.R. Gill, K.E. Nelson, and D.A. Relman. 2005. Diversity of the human intestinal microbial flora. Science. 308:1635-1638. https://doi.org/10.1126/science.1110591
  36. Egert, M. and M.W. Friedrich. 2003. Formation of pseudoterminal restriction fragments, a PCR-related bias affecting terminal restriction fragment length polymorphism analysis of microbial community structure. Appl. Environ. Microbiol. 69:2555-2562. https://doi.org/10.1128/AEM.69.5.2555-2562.2003
  37. Egert, M. and M.W. Friedrich. 2005. Post-amplification Klenow fragment treatment alleviates PCR bias caused by partially single-stranded amplicons. J. Microbiol. Meth. 61:69-75. https://doi.org/10.1016/j.mimet.2004.11.002
  38. Egert, M., S. Marhan, B. Wagner, S. Scheu, and M.W. Friedrich. 2004. Molecular profiling of 16S rRNA genes reveals diet-related differences of microbial communities in soil, gut, and casts of Lumbricus terrestris L. (Oligochaeta: Lumbricidae). FEMS Microbiol. Ecol. 48:187-197. https://doi.org/10.1016/j.femsec.2004.01.007
  39. Elshahed, M.S., F.Z. Najar, B.A. Roe, A. Oren, T.A. Dewers, and L.R. Krumholz. 2004. Survey of Archaeal diversity reveals an abundance of halophilic Archaea in low-salt, sulfide- and sulfur-rich spring. Appl. Environ. Microbiol. 70:2230-2239. https://doi.org/10.1128/AEM.70.4.2230-2239.2004
  40. Engebreston, J.J. and C.L. Moyer. 2003. Fidelity of select restriction endonucleases in determining microbial diversity by terminal-restriction fragment length polymorphism. Appl. Environ. Microbiol. 69:4823-4829. https://doi.org/10.1128/AEM.69.8.4823-4829.2003
  41. Ferrando, L. and S. Tarlera. 2009. Activity and diversity of methanotrophs in the soil-water interface and rhizospheric soil from a flooded temperate rice field. J. Appl. Microbiol. 106:306-316. https://doi.org/10.1111/j.1365-2672.2008.04004.x
  42. Fierer, N., J.P. Schimel, and P.A. 2003. Holden. Influence of drying-rewetting frequency on soil bacterial community structure. Microb. Ecol. 45:63-71. https://doi.org/10.1007/s00248-002-1007-2
  43. Fisher, M.M. and E.W. Triplett. 1999 Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl. Environ. Microbiol. 65:4630-4636.
  44. Flores-Mireles, A.L., S.C. Winans, and G. Holguin. 2007. Molecular characterization of diazotrophic and denitrifying bacteria associated with mangrove roots. Appl. Environ. Microbiol. 73:7308-7321. https://doi.org/10.1128/AEM.01892-06
  45. Franklin, R.B. and A.L. Mills. 2003. Multi-scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field. FEMS Microbiol. Ecol. 44:335-346. https://doi.org/10.1016/S0168-6496(03)00074-6
  46. Friedrich, M.W., D. Schmitt-Wagner, T. Lueders and A. Brune. 2001. Axial differences in community structure of Crenarchaeota and Euryarchaeota in the highly compartmentalized gut of the soil-feeding termite Cubitermes orthognathus. Appl. Environ. Microbiol. 67:4880-4890. https://doi.org/10.1128/AEM.67.10.4880-4890.2001
  47. Fuka, M.M., M. Engel, A. Hagn, J.C. Munch, M. Sommer, and M. Schloter. 2008. Changes of diversity pattern of proteolytic bacteria over time and space in an agricultural soil. Microb. Ecol. 57:391-401.
  48. Garbeva, P., van Veen J.A., and J.D. van Elsas. 2004. Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Ann. Rev. Phytopathol. 42:243-70. https://doi.org/10.1146/annurev.phyto.42.012604.135455
  49. Gauch, H.G. Jr. 1992. Statistical analysis of regional yield trials: AMMI analysis of factorial designs. Elsevier, Amsterdam, the Netherlands.
  50. Ge, Y., J.P. Schimel, and P.A. Holden. 2011. Evidence for negative effects of $TiO_2$ and ZnO nanoparticles on soil bacterial communities. Environ. Sci. Technol. DOI: 10.1021/es103040t.
  51. Genney, D.R., I.C. Anderson, and I.J. Alexander. 2006. Finescale distribution of pine ectomycorrhizas and their extramatrical mycelium. New Phytol. 170:381-390. https://doi.org/10.1111/j.1469-8137.2006.01669.x
  52. Grant, R.J., L.M. Muckian, N.J.W. Clipson, and E.M. Doyle. 2007. Microbial community changes during the bioremediation of creosote-contaminated soil. Lett. Appl. Microbiol. 44:293-300. https://doi.org/10.1111/j.1472-765X.2006.02066.x
  53. Grüter, D., B. Schmid, and H. Brandl. 2006. Influence of plant diversity and elevated atmospheric carbon dioxide levels on belowground bacterial diversity. BMC Microbiol. 6:68. https://doi.org/10.1186/1471-2180-6-68
  54. Hackl, E., S. Zechmeister-Boltenstern, L. Bodrossy, and A. Sessitsch. 2004. Comparison of diversities and compositions of bacterial populations inhabiting natural forest soils. Appl. Environ. Microbiol. 70:5057-5065. https://doi.org/10.1128/AEM.70.9.5057-5065.2004
  55. Hahn, M., J. Wilhelm, and A. Pingoud. 2001. Influence of fluorophore dye labels on the migration behavior of polymerase chain reaction-amplified short tandem repeats during denaturing capillary electrophoresis. Electrophoresis. 22:2691-2700. https://doi.org/10.1002/1522-2683(200108)22:13<2691::AID-ELPS2691>3.0.CO;2-S
  56. Hein, J.W., G.V. Wolfe, and K.A. Blee. 2007. Comparison of rhizosphere bacterial communities in Arabidopsis thaliana mutants for systemic acquired resistance. Microb. Ecol. 55:333-343.
  57. Hewson, I. and J.A. Fuhrman. 2006. Improved strategy for comparing microbial assemblage fingerprints. Microb. Ecol. 51:147-153. https://doi.org/10.1007/s00248-005-0144-9
  58. Hill, J.E., R.P. Seipp, M. Betts, L. Hawkins, A.G. Van Kessel, W.L. Crosby, and S.M. Hemmingsen. 2002. Extensive profiling of a complex microbial community by high-througput sequencing. Appl. Environ. Microbiol. 68:3055-3066. https://doi.org/10.1128/AEM.68.6.3055-3066.2002
  59. Hoffmann, T., H.P. Horz, D. Kemnitz, and R. Conrad. 2002. Diversity of the particulate methane monooxygenase gene in methanotrophic samples from different rice field soils in China and the Philippines. Syst. Appl. Microbiol. 25:267-274. https://doi.org/10.1078/0723-2020-00104
  60. Hopkins, M.J., R. Sharp, and G.T. Macfarlane. 2001. Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles. Gut. 48:198-205. https://doi.org/10.1136/gut.48.2.198
  61. Horz, H.P., J.H. Rotthauwe, T. Lukow, and W. Liesack. 2000. Identification of major subgroups of ammonia-oxidizing bacteria in environmental samples by T-RFLP analysis of amoA PCR products. J. Microbiol. Methods. 39:197-204. https://doi.org/10.1016/S0167-7012(99)00119-0
  62. Hoshino, T., T. Terahara, K. Yamada, H. Okuda, I. Suzuki, S. Tsuneda, A. Hirata, and Y. Inamori. 2006. Long-term monitoring of the succession of a microbial community in activated sludge from a circulation flush toilet as a closed system. FEMS Microbiol. Ecol. 55:459-470. https://doi.org/10.1111/j.1574-6941.2005.00047.x
  63. Hullar, M.A J., L.A. Kaplan, and D.A. Stahl. 2006. Recurring seasonal dynamics of microbial communities in stream habitats. Appl. Environ. Microbiol. 72:713-722. https://doi.org/10.1128/AEM.72.1.713-722.2006
  64. Islam, M.R., P.S. Chauhan, Y. Kim, M. Kim, and T.M. Sa. 2011. Community level functional diversity and enzyme activities in paddy soils under different long-term fertilizer management practices. Biol. Fert. Soils. DOI: 10.1007/s00374-010-0524-2.
  65. Jin, M., Z.G. Zhao, Z.G. Qiu, J.F. Wang, Z.L. Chen, Z.Q. Shen, C. Li, X.W. Wang, Y. Dong, and J.W. Li. 2010. Rapid method to extract high-quality RNA from activated sludge. Huan Jing Ke Xue. 31:260-265
  66. Johnson, D., P.J. Vandenkoornhuyse, J.R. Leake, L. Gilbert, R.E. Booth, J.P. Grime, J.P.W. Young, and D.J. Read. 2004. Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytol. 161:503-515. https://doi.org/10.1046/j.1469-8137.2003.00938.x
  67. Johnson, D.E. 1998. Applied multivariate methods for data analysts. Brooks/Cole, Pacific Grove, CA, USA.
  68. Junier, P., T. Junier, and K. Witzel. 2008. TRiFLe, a Program for in silico terminal restriction fragment length polymorphism analysis with user-defines sequence sets. Appl. Environ. Microbiol. 74:6452-6456. https://doi.org/10.1128/AEM.01394-08
  69. Kanagawa, T. 2003. Bias and artifacts in multitemplate polymerase chain reactions (PCR). J. Biosci. Bioeng. 96:317-323. https://doi.org/10.1016/S1389-1723(03)90130-7
  70. Kaplan, C.W. and C.L. Kitts. 2003. Variation between observed and true terminal restriction fragment length is dependent on true TRF length and purine content. J. Microbiol. Meth. 54:121-125. https://doi.org/10.1016/S0167-7012(03)00003-4
  71. Katsivela, E., E.R.B. Moore, D. Maroukli, C. Strompl, D. Pieper, and N. Kalogerakis. 2005. Bacterial community dynamics during in-situ bioremediation of petroleum waste sludge in land farming sites. Biodegradation. 16:169-180 https://doi.org/10.1007/s10532-004-4883-y
  72. Kemnitz, D., K.J. Chin, P. Bodelier, and R Conrad. Community analysis of methanogenic archaea within a riparian flooding gradient. Environ. Microbiol. 6:449-461.
  73. Kennedy, N., S. Edwards, and N. Clipson. 2005. Soil bacterial and fungal community structure across a range of unimproved and semi-improved upland grasslands. Microb. Ecol. 50:463-473. https://doi.org/10.1007/s00248-005-0256-2
  74. Kent, A.D., D.J. Smith, B.J. Benson, and E.W. Triplett. 2003. Web-based phylogenetic assignment tool for analysis of terminal restriction fragment length polymorphism profiles of microbial communities. Appl. Environ. Microbiol. 69:6768-6776. https://doi.org/10.1128/AEM.69.11.6768-6776.2003
  75. Knauth, S., T. Hurek, and D. Brar. 2005. Reinhold-Hurek B. Influence of different Oryza cultivars on expression of nifH gene pools in roots of rice. Environ. Microbiol. 7:1725-1733. https://doi.org/10.1111/j.1462-2920.2005.00841.x
  76. Kotsyurbenko, O.R., K.J. Chin, M.V. Glagolev, S. Stubner, M.V. Simankova, A.N. Nozhevnikova, and R. Conrad. 2004. Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog. Environ. Microbiol. 6:1159-1173. https://doi.org/10.1111/j.1462-2920.2004.00634.x
  77. Kraigher, B., T. Kosjek, E. Heath, B. Kompare, and I. Mandic-Mulec. 2008. Influence of pharmaceutical residues on the structure of activated sludge bacterial communities in wastewater treatment bioreactors. Water Res. 42:4578-4588. https://doi.org/10.1016/j.watres.2008.08.006
  78. Krupp, G. and H.J. Gross. 1979. Rapid RNA sequencing: nucleases from Staphylococcus aureus and Neurospora crassa discriminate between uridine and cytidine. Nucleic Acids Res. 6:3481-3489 https://doi.org/10.1093/nar/6.11.3481
  79. Kurata, S., T. Kanagawa, Y. Magariyama, K. Takatsu, K. Yamada, T. Yokomaku, and Y. Kamagata. 2004. Reevaluation and reduction of a PCR bias caused by reannealing of templates. Appl. Environ. Microbiol. 70:7545-7549. https://doi.org/10.1128/AEM.70.12.7545-7549.2004
  80. Kvist, T., B.K. Ahring, and P. Westermann. 2007. Archaeal diversity in Icelandic hot springs. FEMS Microbiol. Ecol. 59:71-80. https://doi.org/10.1111/j.1574-6941.2006.00209.x
  81. Ladapo, J.A. and M.A. Barlaz. 1997. Isolation and characterization of refuse methanogens. J.Appl. Microbiol. 82:751-758. https://doi.org/10.1046/j.1365-2672.1997.00154.x
  82. Lane, D.J., B. Pace, G.J. Olsen, D.A. Stahl, M.L. Sogin, and N.R. Pace. 1985. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Nat. Acad. Sci. 82:6955-6959. https://doi.org/10.1073/pnas.82.20.6955
  83. LaPara, T.M., C.H. Nakatsu, L.M. Panteea, and J.E. Alleman. 2002. Stability of the bacterial communities supported by a seven-stage biological process treating pharmaceutical wastewater as revealed by PCR-DGGE. Water Res. 36:638-646. https://doi.org/10.1016/S0043-1354(01)00277-9
  84. Lee, C., J. Kim, K. Hwang, V. O'Flaherty, and S. Hwang. 2009. Quantitative analysis of methanogenic community dynamics in three anaerobic batch digesters treating different wastewater. Water Res. 43:57-165.
  85. Lee, D.H., Y.G. Zo, and S.J. Kim. 1996. Nonradioactive method to study genetic profiles of natural bacterial communities by PCR single strand conformation polymorphism. Appl. Environ. Microbiol. 62:3112-3120.
  86. Leser, T.D., J.Z. Amenuvor, T.K. Jensen, R.H. Lindecrona, M. Boye, and K. Møller. 2002. Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl. Environ. Microbiol. 68:673-690. https://doi.org/10.1128/AEM.68.2.673-690.2002
  87. Leybo, A.I., A.I .Netrusov, and R. Conrad. 2006. Effect of hydrogen concentration on the community structure of hydrogenotrophic methanogens studied by T-RFLP analysis of 16S rRNA gene amplicons. Microbiol. 75:683-688. https://doi.org/10.1134/S0026261706060105
  88. Li, F., M.A.J. Hullar, and J.W. Lampe. 2007. Optimization of terminal restriction fragment polymorphism (TRFLP) analysis of human gut microbiota. J. Microbiol. Methods. 68:303-311. https://doi.org/10.1016/j.mimet.2006.09.006
  89. Liu, W.T., T.L. Marsh, H. Cheng, and L.J. Forney. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63:4516-4522.
  90. Lord, N.S., C.W. Kaplan, P. Shank, C.L. Kitts, and S.L. Elrod. 2002. Assessment of fungal diversity using terminal restriction fragment (TRF) pattern analysis: comparison of 18S and ITS ribosomal regions. FEMS Microbiol. Ecol. 42:327-337. https://doi.org/10.1111/j.1574-6941.2002.tb01022.x
  91. Lu, Y., T. Lueders, M.W. Friedrich, and R. Conrad. 2005. Detecting active methanogenic populations on rice roots using stable isotope probing. Environ. Microbiol. 7:326-336. https://doi.org/10.1111/j.1462-2920.2005.00697.x
  92. Lueders, T. and M.W. Friedrich. 2003. Evaluation of PCR amplification bias by terminal restriction fragment length polymorphism analysis of small-subunit rRNA and mcrA genes by using defined template mixtures of methanogenic pure cultures and soil DNA extracts. Appl. Environ. Microbiol. 69:320-326. https://doi.org/10.1128/AEM.69.1.320-326.2003
  93. Lukow, T., P.F. Dunfield, and W. Liesack. 2000. Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non-transgenic potato plants. FEMS Microbiol. Ecol. 3:241-247.
  94. Luna. G.M., A. Dell'Anno, C. Corinaldesi, M. Armeni, and R. Danovaro. 2009. Diversity and spatial distribution of metal-reducing bacterial assemblages in ground waters of different redox conditions. Int. Microbiol. 12:153-159.
  95. Luz, A.P., V.H., Pellizari, L.G. Whyte, and C.W. Greer. 2004. A survey of indigenous microbial hydrocarbon degradation genes in soils from Antarctica and Brazil. Can. J. Microbiol 50:323-333. https://doi.org/10.1139/w04-008
  96. MacKay, R.M. and W.F. Doolittle. 1981. Nucleotide sequences of Acnathamoeba castellanii 5S and 5.8S ribosomal ribonucleic acids: phylogenetic and comparative structural analyses. Nucleic Acids Res. 9:3321-3334. https://doi.org/10.1093/nar/9.14.3321
  97. Marsh, T.L., P. Saxman, J. Cole, and J. Tiedje. 2000. Terminal restriction fragment length polymorphism analysis program, a web-based research tool for microbial community analysis. Appl. Environ. Microbiol. 66:3616-3620. https://doi.org/10.1128/AEM.66.8.3616-3620.2000
  98. McGarvey, J.A, W.G. Miller, R. Zhang, Y. Ma, and F. Mitloehner. 2007. Bacterial population dynamics in dairy waste during aerobic and anaerobic treatment and subsequent storage. Appl. Environ. Microbiol. 73:193-202. https://doi.org/10.1128/AEM.01422-06
  99. McGarvey, J.A., W.G. Miller, S. Sanchez, C.J. Silva, and L.C. Whitehand. 2005. Comparison of bacterial populations and chemical composition of dairy wastewater held in circulated and stagnant lagoons. J. Appl. Microbiol. 99:867-877. https://doi.org/10.1111/j.1365-2672.2005.02662.x
  100. Meier, C., B. Wehrli, and J.R. van der Meer. 2008. Seasonal fluctuations of bacterial community diversity in agricultural soil and experimental validation by laboratory disturbance experiments. Microb. Ecol. 56:210-222. https://doi.org/10.1007/s00248-007-9337-8
  101. Mengoni, A., E. Grassi, R. Barzanti, E.G. Biondi, C. Gonnelli, C.K. Kim, and M. Bazzicalupo. 2004. Genetic diversity of bacterial communities of serpentine soil and of rhizosphere of the nickel-hyperaccumulator plant Alyssum bertolonii. Microb. Ecol. Nucleic Acids Res. 48:209-217.
  102. Micallef, S.A., M.P. Shiaris, and A. Colon-Carmona. 2009. Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates. J. Exp. Bot. Nucleic Acids Res. 60:1729-1742.
  103. Mintie, A.T., R.S. Heichen, Jr. K. Cromack, D.D. Myrold, and P.J. Bottomley. 2003. Ammonia-oxidizing bacteria along meadow-to-forest transects in the Oregon Cascade mountains. Appl. Environ. Microbiol. 69:3129-3136. https://doi.org/10.1128/AEM.69.6.3129-3136.2003
  104. Moeseneder. M.M., J.M. Arrieta, G. Muyzer, C. Winter, and G. Herndl. 1999. Optimization of terminal-restriction fragment length polymorphism analysis for complex marine bacterioplankton communities and comparison with denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 65:3518-3525.
  105. Mohanty, S.R., P.L.E. Bodelier, V. Floris, and R. Conrad. 2006. Differential effects of nitrogenous fertilizers on methaneconsuming microbes in rice field and forest soils. Appl. Environ. Microbiol. 72:1346-1354. https://doi.org/10.1128/AEM.72.2.1346-1354.2006
  106. Moyer, C.L., J.M. Tiedje, F.C. Dobbs, and D.M. Karl. 1996. A computer-simulated restriction fragment length polymorphism analysis of bacterial small-subunit rRNA genes: efficacy of selected tetrameric restriction enzymes for studies of microbial diversity in nature. Appl. Environ. Microbiol. 62:2501-2507.
  107. Mullis, K., F. Faloona, S. Scharf, R. Saiki, G. Horn, and H. Erlich. 1986. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor symposia on quantitative biology. 51:263-273. https://doi.org/10.1101/SQB.1986.051.01.032
  108. Mummey, D.L. and P.D. Stahl. 2003. Spatial and temporal variability of bacterial 16S rDNA-based T-RFLP patterns derived from soil of two Wyoming grassland ecosystems. FEMS Microbiol. Ecol. 46:113-120. https://doi.org/10.1016/S0168-6496(03)00208-3
  109. Murase, J., M. Noll, and P. Frenzel. 2006. Impact of protists on the activity and structure of the bacterial community in a rice field soil. Appl. Environ. Microbiol. 72:5436-5444. https://doi.org/10.1128/AEM.00207-06
  110. Muyzer, G., E.C. De Waal, and A.G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695-700.
  111. Nagashima, K., T. Hisada, M. Sato, and J. Mochizuki. 2003. Application of new primer-enzyme combinations to terminal restriction fragment length polymorphism profiling of bacterial populations in human feces. Appl. Environ. Microbiol. 69:1251-1262. https://doi.org/10.1128/AEM.69.2.1251-1262.2003
  112. Nautiyal, C.S., P.S. Chauhan, and C.R. Bhatia. 2010. Changes in soil physico-chemical properties and microbial functional diversity due to 14 years of conversion of grassland to organic agriculture in semi-arid agroecosystem. Soil Till. Res. 109:55-60. https://doi.org/10.1016/j.still.2010.04.008
  113. Nilsson, W.B. and M.S. Strom. 2002. Detection and identification of bacterial pathogens of fish in kidney tissue using terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes. Dis. Aquat. Org. 48:175-185. https://doi.org/10.3354/dao048175
  114. Nogales, B., E.R.B. Moore, E. Llobet-Brossa, R. Rossello-Mora, R. Amann, and K.N. Timmis. 2001. Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil. Appl. Environ. Microbiol. 67:1874-1884. https://doi.org/10.1128/AEM.67.4.1874-1884.2001
  115. Nogales, B., E.R.B. Moore, W. Abraham, and K.N. Timmis. 1999. Identification of the metabolically active members of a bacterial community in a polychlorinated biphenyl-polluted moorland soil. Environ. Microbiol. 1:199-212. https://doi.org/10.1046/j.1462-2920.1999.00024.x
  116. Noll, M., D. Matthies, P. Frenzel, M. Derakshani, and W. Liesack. 2005. Succession of bacterial community structure and diversity in a paddy soil oxygen gradient. Environ. Microbiol 7:382-395. https://doi.org/10.1111/j.1462-2920.2005.00700.x
  117. Noll, M., P. Frenzel, and R. Conrad. 2008. Selective stimulation of type I methanotrophs in a rice paddy soil by urea fertilization revealed by RNA-based stable isotope probing. FEMS Microbiol. Ecol. 65:125-132. https://doi.org/10.1111/j.1574-6941.2008.00497.x
  118. Nottingham, P.M. and R.E. Hungate. 1968. Isolation of methanogenic bacteria from feces of man. J. Bacteriol. 96:2178-2179.
  119. Olsen, G.J., D.J. Lane, S.J. Giovannoni, and N.R. Pace. 1986. Microbial ecology and evolution: A ribosomal RNA approach. Ann. Rev. Microbiol. 40:337-365. https://doi.org/10.1146/annurev.mi.40.100186.002005
  120. Osborn, A.M., E.R.B. Moore, and K.N. Timmis. 2000. An evaluation of terminal restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ. Microbiol. 2:39-50. https://doi.org/10.1046/j.1462-2920.2000.00081.x
  121. Osborne, C.A., M. Galic, P. Sangwan, and P.H. Janssen. 2005. PCR-generated artifact from 16S rRNA gene-specific primers. FEMS Microbiol. Lett. 248:183-187. https://doi.org/10.1016/j.femsle.2005.05.043
  122. Perez-Jimenez, J.R. and L.J. Kerkhof. 2005. Phylogeography of sulfate-reducing bacteria among disturbed sediments, disclosed analysis of the dissimilatory sulfite reductase genes (dsrAB). Appl. Environ. Microbiol. 71:1004-1011. https://doi.org/10.1128/AEM.71.2.1004-1011.2005
  123. Perez-Piqueres, A., V. Edel-Herrmann, C. Alabouvette, and C. Steinberg. 2006. Response of soil microbial communities to compost amendments. Soil Biol. Biochem. 38:460-470. https://doi.org/10.1016/j.soilbio.2005.05.025
  124. Pett-Ridge, J. and M.K. Firestone. 2005. Redox fluctuation structures microbialcommunities in a wet tropical soil. Appl. Environ. Microbiol. 71:6998-7007. https://doi.org/10.1128/AEM.71.11.6998-7007.2005
  125. Polz, M.F. and C.M. Cavanaugh. 1998. Bias in template-toproduct ratios in multitemplate PCR. Appl. Environ. Microbiol. 64:3724-3730.
  126. Qiu, X., L. Wu, H. Huang, P.E. McDonel, A.V. Palumbo, J.M. Tiedje, and J. Zhou. 2001. Evaluation of PCR-generated chimeras, mutations, and heteroduplexes with 16S rRNA gene-based cloning. Appl. Environ. Microbiol. 67:880-887. https://doi.org/10.1128/AEM.67.2.880-887.2001
  127. Ramakrishnan, B., T. Lueders, R. Conrad, and M. Friedrich. 2000. Effect of soil aggregate size on methanogenesis and archaeal community structure in anoxic rice field soil. FEMS Microbiol. Ecol. 32:261-270. https://doi.org/10.1111/j.1574-6941.2000.tb00719.x
  128. Rappe, M.S. and S.J. Giovannoni. 2003. The uncultured microbial majority. Ann. Rev. Microbiol. 57:369-394. https://doi.org/10.1146/annurev.micro.57.030502.090759
  129. Rasche, F., V. Hödl, C. Poll, E. Kandeler, M.H. Gerzabek, J.D. van Elsas, and A. Sessitsch. 2006. Rhizosphere bacteria affected by transgenic potatoes with antibacterial activities compared with the effects of soil, wild-type potatoes, vegetation stage and pathogen exposure. FEMS Microbiol. Ecol. 56:219-235. https://doi.org/10.1111/j.1574-6941.2005.00027.x
  130. Redfield, E., S.M. Barns, J. Belnap, L.L. Daane, and C.R. Kuske. 2002. Comparative diversity and composition of cyanobacteria in three predominant soil crusts of the Colorado Plateau. FEMS Microbiol. Ecol. 40:55-63. https://doi.org/10.1111/j.1574-6941.2002.tb00936.x
  131. Rees, G.N., D.S. Baldwin, G.O. Watson, S. Perryman, and D.L. Nielsen. 2004. Ordination and significance testing of microbial community composition derived from terminal restriction fragment length polymorphisms: application of multivariate statistics. Antonie van Leeuwenhoek. 86:339-347. https://doi.org/10.1007/s10482-004-0498-x
  132. Reysenbach, A.L., L.J. Giver, G.S. Wickham, and N.R. Pace. 1992. Differential amplification of rRNA genes by polymerase chain reaction. Appl. Environ. Microbiol. 58:3417-3418.
  133. Rich, J.J., R.S. Heichen, P.J. Bottomley, Jr. K. Cromack, and D.D. Myrold. 2003. Community composition and functioning of denitrifying bacteria from adjacent meadow and forest soils. Appl. Environ. Microbiol. 69:5974-5982. https://doi.org/10.1128/AEM.69.10.5974-5982.2003
  134. Ricke, P., S. Kolb, and G. Braker. 2005. Application of a newly developed ARB software-integrated tool for in silico terminal restriction fragment length polymorphism analysis reveals the dominance of a novel pmoA cluster in a forest soil. Appl. Environ. Microbiol. 71:1671-1673. https://doi.org/10.1128/AEM.71.3.1671-1673.2005
  135. Rösch, C. and H. Bothe. 2004. Improved assessment of denitrifying, N2-fixing, and total-community bacteria by terminal restriction fragment length polymorphism analysis using multiple restriction enzymes. Appl. Environ. Microbiol. 71:2026-2035.
  136. Ruan, Q., J.A. Steele, M.S. Schwalbach, J.A. Fuhrman, and F. Sun. 2006. A dynamic programming algorithm for binning microbial community profiles. Bioinformatics. 22:1508-1514. https://doi.org/10.1093/bioinformatics/btl114
  137. Schmidt, M., A. Priemé, and P. Stougaard. 2006. Bacterial diversity in permanently cold and alkaline ikaite columns from Greenland. Extremophiles. 10:551-562. https://doi.org/10.1007/s00792-006-0529-9
  138. Schmitt-Wagner, D., M.W. Friedrich, B. Wagner, and A. Brune. 2003. Axial dynamics, stability, and interspecies similarity of bacterial community structure in the highly compartmentalized gut of soil-feeding termites (Cubitermes spp.). Appl. Environ. Microbiol. 69:6018-6024. https://doi.org/10.1128/AEM.69.10.6018-6024.2003
  139. Scully, C., G. Collins, and V. O'Flaherty. 2005. Assessment of anaerobic wastewater treatment failure using terminal restriction fragment length polymorphism analysis. J. Appl. Microbiol. 99:1463-1471. https://doi.org/10.1111/j.1365-2672.2005.02743.x
  140. Sessitsch, A., A. Weilharter, M.H. Gerzabek, H. Kirchmann, and E Kandeler. 2001. Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Appl. Environ. Microbiol. 67:4215-4224. https://doi.org/10.1128/AEM.67.9.4215-4224.2001
  141. Shyu, C., T. Soule, S.J. Bent, J.A. Foster, and L.J. Forney. 2007. MiCA: a web-based tool for the analysis of microbial communities based on terminal-restriction fragment length polymorphisms of 16S and 18S rRNA genes. Microb. Ecol. 53:562-570. https://doi.org/10.1007/s00248-006-9106-0
  142. Simoncsits, A., G.G. Brownlee, R.S. Brown, J.R. Rubin, and H. Guilley. 1977. New rapid gel sequencing method for RNA. Nature. 269:833-836. https://doi.org/10.1038/269833a0
  143. Singh, B.K., L. Nazaries, S. Munro, I.C. Anderson, and C.D. Campbell. 2006. Use of multiplex terminal restriction fragment length polymorphism for rapid and simultaneous analysis of different components of the soil microbial community. Appl. Environ. Microbiol. 72:7278-7285. https://doi.org/10.1128/AEM.00510-06
  144. Sipila, T.P., A.K. Keskinen, M.L. Akerman, C. Fortelius, K. Haahtela, and K. Yrjala. 2008. High aromatic ring-cleavage diversity in birch rhizosphere: PAH treatment-specific changes of I.E.3 group extradiol dioxygenases and 16S rRNA bacterial communities in soil. ISME J. 2:968-981. https://doi.org/10.1038/ismej.2008.50
  145. Smith, C.J., B.S. Danilowicz, A.K. Clear, F.J. Costello, B. Wilson, and W. G. Meijer. 2005. T-Align, a web-based tool for comparison of multiple terminal restriction fragment length polymorphism profiles. FEMS Microbiol. Ecol. 54:375-380. https://doi.org/10.1016/j.femsec.2005.05.002
  146. Spieck, E., C. Hartwig, I. McCormack, F. Maixner, M. Wagner, A. Lipski, and H. Daims. 2006. Selective enrichment and molecular characterization of a previously uncultured Nitrospiralike bacterium from activated sludge. Environ. Microbiol. 8405-415.
  147. Sun, Y.M., N.N. Zhang, E.T. Wang, H.L. Yuan, J.S. Yang, and W.X. Chen. 2009. Influence of intercropping and intercropping plus rhizobial inoculation on microbial activity and community composition in rhizosphere of alfalfa (Medicago sativa L.) and Siberian wild rye (Elymus sibiricus L.). FEMS Microbiol. Ecol. 70:62-70.
  148. Suzuki, M.T. and S.J. Giovannoni. 1996. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62:625-630.
  149. Szymanski, M., M.Z. Barciszewska, V.A. Erdmann, and J. Barciszewski. 2001. 5S Ribosomal RNA Database. Nucleic Acids Res. 30:176-178.
  150. Takai, K., D.P. Moser, M. DeFlaun, T.C. Onstott, and J.K. Fredrickson. 2001. Archaeal diversity in waters from deep South African gold mines. Appl. Environ. Microbiol. 67:5750-5760. https://doi.org/10.1128/AEM.67.21.5750-5760.2001
  151. Tan, Z., T. Hurek, and B. Reinhold-Hurek. 2003. Effect of N-fertilization, plant genotype and environmental conditions on nifH gene pools in roots of rice. Environ. Microbiol. 5:1009-1015. https://doi.org/10.1046/j.1462-2920.2003.00491.x
  152. Tanaka, Y., T.A. Dyer, and G.G. Brownlee. 1980. An improved direct RNA sequencing method; its application to Vicia faba 5.8S ribosomal RNA. Nucleic Acids Res. 8:1259-1272. https://doi.org/10.1093/nar/8.6.1259
  153. Terahara, T., T. Hoshino, S. Tsuneda, A. Hirata, and Y. Inamori. 2004. Monitoring the microbial population dynamics at the start-up stage of wastewater treatment reactor by terminal restriction fragment length polymorphism analysis based on 16S rDNA and rRNA gene sequences. J. Biosci. Bioeng. 98:425-428. https://doi.org/10.1016/S1389-1723(05)00307-5
  154. Thies, J.E. 2007. Soil microbial community analysis using terminal restriction fragment length polymorphisms. Soil Sci. Soc. Am. 71:579-591. https://doi.org/10.2136/sssaj2006.0318
  155. Thomson, B.C., N.J. Ostle, N.P. McNamara, A.S. Whiteley, and R.I. Griffiths. 2010. Effects of sieving, drying and rewetting upon soil bacterial community structure and respiration rates. J. Microbiol. Methods.83:69-73. https://doi.org/10.1016/j.mimet.2010.07.021
  156. Tiedje, J.M., S. Asming-Brempong, K. Nüsslein, T.L. Marsh, and S.J. Flynn. 1999. Opening the black box of soil microbial diversity. Appl. Soil Ecol. 13:109-122. https://doi.org/10.1016/S0929-1393(99)00026-8
  157. Tiquia, S.M., J.M. Ichida, H.M. Keener, D.L. Elwell, E.H. Burtt, and F.C. Michel. 2005. Bacterial community profiles on feathers during composting as determined by terminal restriction fragment length polymorphism analysis of 16S rDNA genes. Appl. Microbiol. Biotechnol. 67:412-419. https://doi.org/10.1007/s00253-004-1788-y
  158. Tonin, C., P. Vandenkoornhuyse, E.J. Joner, J. Straczek, and C. Leyval. 2001. Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Violoa calaminaria and effect of these fungi on heavy metal uptake by clover. Mycorrhiza. 10:161-168. https://doi.org/10.1007/s005720000072
  159. Torsvik, V., L. Ovreas, and T.F. Thingstad. 2002. Prokaryotic diversity-magnitude, dynamics, and controlling factors. Science. 35:1064-1066.
  160. Tu, O., T. Knott, M. Marsh, K. Bechtol, D. Harris, D. Barker, and J. Bashkin. 1998. The influence of fluorescent dye structure on the electrophoretic mobility of end-labeled DNA. Nucleic Acid Res. 26:2797-2802. https://doi.org/10.1093/nar/26.11.2797
  161. Turpeinen, R., T. Kairesalo, and M.M. Häggblom. 2004. Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils. FEMS Microbiol Ecol. 47:39-50. https://doi.org/10.1016/S0168-6496(03)00232-0
  162. Ulrich, A., G. Klimke, and S. Wirth. 2008. Diversity and activity of cellulose-decomposing bacteria, isolated from a sandy and a loamy soil after long-term manure application. Microb. Ecol. 55:512-522. https://doi.org/10.1007/s00248-007-9296-0
  163. Vandenkoornhuyse, P., K.P. Ridgway, I.J. Watson, A.H. Fitter, and J.P. Young. 2003. Co-existing grass species have distinctive arbuscular mycorrhizal communities. Mol. Ecol. 12:3085-3095. https://doi.org/10.1046/j.1365-294X.2003.01967.x
  164. von Wintzingerode, F., U.B. Gobel, and E. Stackebrandt. 1997. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21:213-229. https://doi.org/10.1111/j.1574-6976.1997.tb00351.x
  165. Wakelin, S.A., M.J., Colloff, and R.S. Kookana. 2008. Effect of wastewater treatment plant effluent on microbial function and community structure in the sediment of a freshwater stream with variable seasonal flow. Appl. Environ. Microbiol. 74:2659-2668. https://doi.org/10.1128/AEM.02348-07
  166. Wang, G.C.Y. and Y. Wang. 1997. Frequency of formation of chimeric molecules as a consequence of PCR co-amplification of 16S rRNA genes from mixed bacterial genomes. Appl. Environ. Microbiol. 63:4645-4650.
  167. Weber, S., T. Lueders, M.W. Friedrich, and R. Conrad. 2001. Methanogenic populations involved in the degradation of rice straw in anoxic paddy soil. FEMS Microbiol. Ecol. 38:11-20. https://doi.org/10.1111/j.1574-6941.2001.tb00877.x
  168. Weng, L., E.M. Rubin, and J Bristow. 2006. Application of sequence-based methods in human microbial ecology. Genome Res. 16:316-322. https://doi.org/10.1101/gr.3676406
  169. Wise, M.G., J.V. McArthur, and L.J. Shimkets. 1999. Methanotroph Diversity in Landfill Soil: Isolation of Novel Type I and Type II methanotrophs whose presence was suggested by culture-independent 16S ribosomal DNA analysis. Appl. Environ. Microbiol. 65:4887-4897.
  170. Wise, M.J. and A.M. Osborn. 2001. TRUFFLER: programs to study microbial community composition and flux from fluorescent DNA fingerprinting data. Bioinformatics Bioengineering Conf. pp 129-135.
  171. Wright, A.G., A.J., Williams, B. Winder, C.T. Christophersen, S.L. Rodgers, and K.D. Smith. 2004. Molecular Diversity of rumen methanogens from sheep in Western Australia. Appl. Environ. Microbiol. 70:1263-1270. https://doi.org/10.1128/AEM.70.3.1263-1270.2004
  172. Wu, X.L., M.W. Fiedrich, and R. Conrad. 2006. Diversity and ubiquity of thermophilic methanogenic archaea in temperate anoxic soils. Environ. Microbiol. 8:394-404. https://doi.org/10.1111/j.1462-2920.2005.00904.x
  173. Young, M.W. 1987. Multidimensional scaling: history, theory, and application. Hamer, R.M. (ed.) Erlbaum, Hillsdale, NJ.
  174. Yrjala, K., A.K. Keskinen, M.L. Akerman, C. Fortelius, and T.P. Sipila. 2010. The rhizosphere and PAH amendment mediate impacts on functional and structural bacterial diversity in sandy peat soil. Environ. Pollut. 158:1680-1688. https://doi.org/10.1016/j.envpol.2009.11.026
  175. Zengler, K., G. Toledo, M. Rappe, J. Elkins, E.J. Mathur, J.M. Short, and M. Keller. 2002. Cultivating the uncultured. Proc.Nat. Acad. Scie. 99:15681-15686. https://doi.org/10.1073/pnas.252630999
  176. Zhou, X., C.J. Brown, Z. Abdo, C.C. Davis, M.A. Hansmann, P. Joyce, J.A. Foster, and L.J. Forney. 2007. Disparity in the vaginal microbial community composition of healthy Caucasian and black woman. ISME J. 1:121-133. https://doi.org/10.1038/ismej.2007.12

Cited by

  1. T-RFLP analysis of soil bacterial structure from Cerrado within the Sete Cidades National Park, Brazil vol.2, pp.1, 2016, https://doi.org/10.1080/23766808.2016.1252583