Browse > Article
http://dx.doi.org/10.1080/12298093.2018.1538072

Development of Polymorphic Simple Sequence Repeat Markers using High-Throughput Sequencing in Button Mushroom (Agaricus bisporus)  

Lee, Hwa-Yong (Department of Forest Science, Chungbuk National University)
Raveendar, Sebastin (National Agrobiodiversity Center, National Institute of Agricultural Science, RDA)
An, Hyejin (Department of Industrial Plant Science and Technology, Chungbuk National University)
Oh, Youn-Lee (Mushroom Science Division, National Institute of Horticultural and Herbal Science, RDA)
Jang, Kab-Yeul (Mushroom Science Division, National Institute of Horticultural and Herbal Science, RDA)
Kong, Won-Sik (Mushroom Science Division, National Institute of Horticultural and Herbal Science, RDA)
Ryu, Hojin (Department of Biology, Chungbuk National University)
So, Yoon-Sup (Department of Crop Science, Chungbuk National University)
Chung, Jong-Wook (Department of Industrial Plant Science and Technology, Chungbuk National University)
Publication Information
Mycobiology / v.46, no.4, 2018 , pp. 421-428 More about this Journal
Abstract
The white button mushroom (Agaricus bisporus) is one of the most widely cultivated species of edible mushroom. Despite its economic importance, relatively little is known about the genetic diversity of this species. Illumina paired-end sequencing produced 43,871,558 clean reads and 69,174 contigs were generated from five offspring. These contigs were subsequently assembled into 57,594 unigenes. The unigenes were annotated with reference genome in which 6,559 unigenes were associated with clusters, indicating orthologous genes. Gene ontology classification assigned many unigenes. Based on genome data of the five offspring, 44 polymorphic simple sequence repeat (SSR) markers were developed. The major allele frequency ranged from 0.42 to 0.92. The number of genotypes and the number of alleles ranged from 1 to 4, and from 2 to 4, respectively. The observed heterozygosity and the expected heterozygosity ranged from 0.00 to 1.00, and from 0.15 to 0.64, respectively. The polymorphic information content value ranged from 0.14 to 0.57. The genetic distances and UPGMA clustering discriminated offspring strains. The SSR markers developed in this study can be applied in polymorphism analyses of button mushroom and for cultivar discrimination.
Keywords
Agaricus bisporus; button mushroom; SSR; illumina sequencing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Menolli Junior N, Asai T, Capelari M, et al. Morphological and molecular identification of four Brazilian commercial isolates of Pleurotus spp. and cultivation on corncob. Braz Arch Biol Technol. 2010;53:397-408.   DOI
2 Khush RS, Becker E, Wach M. DNA amplification polymorphisms of the cultivated mushroom Agaricus bisporus. Appl Environ Microbiol. 1992;58:2971-2977.
3 Iwao S, Masahiro T, Yoshiho N. Discrimination of mushrooms in genus Pleurotus by DNA restriction fragment length polymorphism. J Gen Appl Microbiol. 1992;38:597-603.   DOI
4 Mukhopadhyay K, Haque I, Bandopadhyay R, et al. AFLP based assessment of genetic relationships among shiitake (Lentinula ssp.) mushrooms. Mol Biol Rep. 2012;39:6059-6065.   DOI
5 Kim K-H, Ka K-H, Kang JH, et al. Identification of single nucleotide polymorphism markers in the laccase gene of shiitake mushrooms (Lentinula edodes). Mycobiology. 2015;43:75-80.   DOI
6 Im CH, Kim KH, Je HJ, et al. Multiplex simple sequence repeat (SSR) markers discriminating Pleurotus eryngii cultivar. Korean J Mycol. 2014;42:159-164. Korean.   DOI
7 Sonnenberg ASM, Baars JJP, Hendrickx PM, et al. Breeding and strain protection in the button mushroom Agaricus bisporus. In: Savoie JM, Foulongne-Oriol M, Largeteau M et al. editors. Proceedings of the 7th International Conference of the World Society for Mushroom Biology and Mushroom Products; 2011 Oct 04-07; Arcachon: INRA; 2011. p. 7-15.
8 Stajich JE, Wilke SK, Ahren D, et al. Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus). Proc Natl Acad Sci U S A. 2010;107:11889-11894.   DOI
9 Raper CA, Raper JR, Miller RE. Genetic analysis of the life cycle of Agaricus bisporus. Mycologia. 1972;64:1088-1117.   DOI
10 Savoie J-M, Foulongne-Oriol M, Barroso G, et al. Genetics and genomics of cultivated mushrooms, application to breeding of agarics. In: Kempken F, editor. Agricultural Applications. Berlin: Springer-Verlag Berlin Heidelberg; 2013. p. 3-33.
11 Sonnenberg ASM, Baars JJP, Kerrigan RW. Mushroom breeding: hurdles and challenges. In: Lelly JI, Buswell JA, editors. Proceeding of the 6th International Conference of the World Society for Mushroom Biology and Mushroom Products; 2008 Sep 29-Oct 3; Bonn: GAMU; 2008. p. 96-103.
12 Min KJ, Kim JK, Kwak AM, et al. Genetic diversity of Agaricus bisporus strains by PCR polymorphism. Korean J Mycol. 2014;42:1-8. Korean.   DOI
13 Hong WJ, Khaing AA, Park YJ. Cultivar identification of Chrysanthemum (Dendranthema grandiflorum. Ramat.) using SSR markers. Korean J Intl Agri. 2013;25:385-394. Korean.   DOI
14 Paisey EC, Abbas B. Morphological characteristics and nutritional values of wild types of sago mushrooms (Volvariella sp.) that growth naturally in Manokwari, West Papua. Natural Sci. 2015;7:559-604.
15 Kauserud H, Heegaard E, Buntgen U, et al. Warming-induced shift in European mushroom fruiting phenology. Proc Natl Acad Sci U S A. 2012;109:14488-14493.   DOI
16 Gao W, Weijn A, Baars JJ, et al. Quantitative trait locus mapping for bruising sensitivity and cap color of Agaricus bisporus (button mushrooms). Fungal Genet Biol. 2015;77:69-81.   DOI
17 Imbach EJ. Mushroom of the canton of Lucerne and neighboring central Switzerland. Mitt Naturforsch Ges Luzern. 1946;15:1-85.
18 Cavagnaro PF, Senalik DA, Yang L, et al. Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomics. 2010;11:569.   DOI
19 Morin E, Kohler A, Baker AR, et al. Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche. Proc Natl Acad Sci U S A. 2012;109:17501-17506.   DOI
20 Lu T, Bau T. De novo assembly and characterization of the transcriptome of a wild edible mushroom Leucocalocybe mongolica and identification of SSR markers. Biotechnol Biotechnological Equip. 2017;31:1148-1159.   DOI
21 Wang Q, Fang L, Chen J, et al. Genome-wide mining, characterization, and development of microsatellite markers in gossypium species. Sci Rep. 2015;5:10638.   DOI
22 Lee H-Y, Moon S, Shim D, et al. Development of 44 novel polymorphic SSR markers for determination of shiitake mushroom (Lentinula edodes) cultivars. Genes. 2017;8:109.   DOI
23 Wang M, Li RZ, Yang WM, et al. Assessing the genetic diversity of cultivars and wild soybeans using SSR markers. Afr J Biotechnol. 2010;9:4857-4866.
24 Ram SG, Thiruvengadam V, Vinod KK. Genetic diversity among cultivars, landraces and wild relatives of rice as revealed by microsatellite markers. J Appl Genet. 2007;48:337-345.   DOI
25 Liu XB, Li J, Yang ZL. Genetic diversity and structure of core collection of winter mushroom (Flammulina velutipes) developed by genomic SSR markers. Hereditas. 2018;155:3.   DOI
26 Savoie J-M, Mata G. Growing Agaricus bisporus as a contribution to sustainable agricultural development. In: Petre M, editor. Mushroom Biotechnology. San Diego: Academic Press; 2016. p. 69-91.
27 Liu J, Jia L, Kan J, et al. In vitro and in vivo antioxidant activity of ethanolic extract of white button mushroom (Agaricus bisporus). Food Chem Toxicol. 2013;51:310-316.   DOI
28 Foulongne-Oriol M, Spataro C, Savoie JM. Novel microsatellite markers suitable for genetic studies in the white button mushroom Agaricus bisporus. Appl Microbiol Biotechnol. 2009;84:1125-1135.   DOI
29 McGee CF. Microbial ecology of the Agaricus bisporus mushroom cropping process. Appl Microbiol Biotechnol. 2018;102:1075-1083.   DOI
30 Royse DJ. A global perspective on the high five: Agaricus, Pleurotus, Lentinula, Auricularia & Flammulina. In: Singh M, editor. Proceedings of 8th International Conference on Mushroom Biology and Mushroom Products; 2014 Nov 19-22; New Delhi: ICAR; 2014. p. 1-6.
31 Kabel MA, Jurak E, Makela MR, et al. Occurrence and function of enzymes for lignocellulose degradation in commercial Agaricus bisporus cultivation. Appl Microbiol Biotechnol. 2017;101:4363-4369.   DOI
32 Lomsadze A, Ter-Hovhannisyan V, Chernoff YO, et al. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res. 2005;33:6494-6506.   DOI
33 Li YC, Korol AB, Fahima T, et al. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol. 2002;11:2453-2465.   DOI
34 Saha MC, Cooper JD, Mian MA, et al. Tall fescue genomic SSR markers: development and transferability across multiple grass species. Theor Appl Genet. 2006;113:1449-1458.   DOI
35 Thiel T, Michalek W, Varshney R, et al. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet. 2003;106:411-422.   DOI
36 Nam YK. Genetic polymorphism and morphological traits of collected Agaricus bisporus strains [master's thesis]. Cheongju: Chungbuk National University; 2018.
37 Kajitani R, Toshimoto K, Noguchi H, et al. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res. 2014;24:1384-1395.   DOI
38 Gotz S, Garcia-Gomez JM, Terol J, et al. Highthroughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008;36:3420-3435.   DOI
39 Fritsche G. Breeding mushrooms. Mushroom J. 1986;157:4-17.
40 Rokni N, Goltapeh EM, Shafeinia A, et al. Evaluation of genetic diversity among some commercial cultivars and Iranian wild strains of Agaricus bisporus by microsatellite markers. Botany. 2016;94:9-13.   DOI
41 Kerrigan RW, Royer JC, Baller LM, et al. Meiotic behavior and linkage relationships in the secondarily homothallic fungus Agaricus bisporus. Genetics. 1993;133:225-236.