DOI QR코드

DOI QR Code

Genetic Clarification of Auricularia heimuer Strains Bred and Cultivated in Korea Using the ITS and IGS1 rDNA Region Sequences

  • Nitesh Pant (Department of Microbiology, Division of Biological Sciences, Dankook University) ;
  • HyeongJin Noh (Department of Microbiology, Division of Biological Sciences, Dankook University) ;
  • Won-Ho Lee (Forest Mushroom Research Center) ;
  • Seong Hwan Kim (Department of Microbiology, Division of Biological Sciences, Dankook University)
  • Received : 2022.10.10
  • Accepted : 2023.01.11
  • Published : 2023.04.30

Abstract

Auricularia is one of the broadly cultivated edible mushrooms in Korea. Most of the Korean Auricularia strains used for cultivation and breeding are known as A. auricula-judae. Recently, this species has been reported to belong to a species complex. Therefore, this study was carried out to genetically clarify the bred and cultivated Korean A. auricula-judae strains. The internal transcribed spacer (ITS) and IGS1 rDNA region sequences were determined from 10 A. auricula-judae strains by PCR and sequencing. Variation in the nucleotide sequence and sequence length of the two rDNA regions were found among the seven A. auricula-judae strains. A maximum-likelihood (ML) phylogenetic tree based on the ITS sequences clearly placed all the 10 Korean A. auricula-judae strains in the A. heimuer clade of the A. auriculajudae complex. A. heimuer is diverged from A. auricula-judae. An ML phylogenetic tree based on the IGS1 sequences revealed the close relationship between Korean A. heimuer strains to Chinese A. heimuer strains. But each strain could be distinguishable by the IGS1 sequence. Furthermore, progeny strains in the seven Korean strains could be differentiated from their parental strains by the IGS1 sequence based phylogenetic tree. Our results are expected to be used to complement the distinction of domestic Auricularia cultivars.

Keywords

Acknowledgement

This study was supported by R&D Program for Forest Science Technology [Project No. FTIS 2020204A00-2121-BA01] provided by Korea Forest Service (Korea Forestry Promotion Institute) and Dankook University in 2022.

References

  1. Liu E, Zhang Y, Liu F, et al. Review on Auricularia auricula-judae as a functional food: growth, chemical composition, and biological activities. J Agric Food Chem. 2021;69(6):1739-1750. https://doi.org/10.1021/acs.jafc.0c05934
  2. Wu F, Yuan Y, Malysheva VF, et al. Species clarification of the most important and cultivated Auricularia mushroom "Heimuer": evidence from morphological and molecular data. Phytotaxa. 2014;186(5):241-253. https://doi.org/10.11646/phytotaxa.186.5.1
  3. Wu F, Tohtirjap A, Fan L-F, et al. Global diversity and updated phylogeny of Auricularia (Auriculariales, Basidiomycota). J Fungi. 2021;7(11):933.
  4. Kim KJ, Kim D, Lee SJ, et al. Characterization of a new cultivar of Auricularia auricula-judae "YongA". J Mushroom. 2018;16(3):198-202.
  5. Kim SH, Uzunovic A, Breuil C. Rapid detection of Ophiostoma piceae and O. quercus in stained wood by PCR. Appl Environ Microbiol. 1999;65(1):287-290. https://doi.org/10.1128/AEM.65.1.287-290.1999
  6. Badotti F, de Oliveira FS, Garcia CF, et al. Effectiveness of ITS and sub-regions as DNA barcode markers for the identification of Basidiomycota (Fungi). BMC Microbiol. 2017;17(1):1-12. https://doi.org/10.1186/s12866-016-0921-2
  7. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772-780. https://doi.org/10.1093/molbev/mst010
  8. Li L, Wei L, Bian Y-B, et al. Development of species-specific primers for identifying Auricularia auricula-judae using intergenic spacer 1 (IGS1) sequences. Afr J Biotechnol. 2011;10(69):15494-15500. https://doi.org/10.5897/AJB11.2433
  9. Sievers F, Wilm A, Dineen D, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7(1):539.
  10. Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547-1549. https://doi.org/10.1093/molbev/msy096
  11. Okonechnikov K, Golosova O, Fursov M, et al. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics. 2012;28(8):1166-1167. https://doi.org/10.1093/bioinformatics/bts091
  12. Malysheva VF, Bulakh EM. Contribution to the study of the genus Auricularia (Auriculariales, Basidiomycota) in Russia. Novosti Sistematiki Nizshikh Rastenii. 2014;48:164-180. https://doi.org/10.31111/nsnr/2014.48.164
  13. Yuan Y, Wu F, Si J, et al. Whole genome sequence of Auricularia heimuer (Basidiomycota, Fungi), the third most important cultivated mushroom worldwide. Genomics. 2019;111(1):50-58. https://doi.org/10.1016/j.ygeno.2017.12.013
  14. Li L, Zhong CH, Bian YB. The molecular diversity analysis of Auricularia auricula-judae in China by nuclear ribosomal DNA intergenic spacer. Electron J Biotechnol. 2014;17(1):27-33. https://doi.org/10.1016/j.ejbt.2013.12.005
  15. Cho SE, Kwag YN, Lee DH, et al. Current taxonomical status of Korean Auricularia species. Kor J Mycol. 2021;49(1):21-31.
  16. Kwon HW, Choi MA, Yun YH, et al. Genetic and biochemical characterization of monokaryotic progeny strains of button mushroom (Agaricus bisporus). Mycobiology. 2015;43(1):81-86. https://doi.org/10.5941/MYCO.2015.43.1.81