• Title/Summary/Keyword: IC protection

Search Result 125, Processing Time 0.032 seconds

Design of Zero Cross Detection Power Factor Correction IC (Zero Cross Detection Power Factor Correction IC 설계)

  • Seo, Kil-Soo;Kim, Hyoung-Woo;Kim, Ki-Hyun;Park, Hyeon-Il;Kim, Nam-Kyun;Park, Ju-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.519-520
    • /
    • 2008
  • In this paper, we design and implement the monolithic zero crossing detection power factor correction IC using a high voltage 30V BCD process. The ZCD PFC IC is designed for power applications, such as notebook, LCD monitor, etc. It includes power factor correction function and several protection circuit, regulator, high-voltage high current output drivers. And also, the designed IC has restart timer function which the output pulse is generated if the output signal of IC is not in a 200us. The simulation results show that the designed IC acts properly as power factor correction IC with efficient protective functions.

  • PDF

Electrical Characteristic of Power MOSFET with Zener Diode for Battery Protection IC

  • Kim, Ju-Yeon;Park, Seung-Uk;Kim, Nam-Soo;Park, Jung-Woong;Lee, Kie-Yong;Lee, Hyung-Gyoo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.1
    • /
    • pp.47-51
    • /
    • 2013
  • A high power MOSFET switch based on a 0.35 ${\mu}m$ CMOS process has been developed for the protection IC of a rechargeable battery. In this process, a vertical double diffused MOS (VDMOS) using 3 ${\mu}m$-thick epi-taxy layer is integrated with a Zener diode. The p-n+Zener diode is fabricated on top of the VDMOS and used to protect the VDMOS from high voltage switching and electrostatic discharge voltage. A fully integrated digital circuit with power devices has also been developed for a rechargeable battery. The experiment indicates that both breakdown voltage and leakage current depend on the doping concentration of the Zener diode. The dependency of the breakdown voltage on doping concentration is in a trade-off relationship with that of the leakage current. The breakdown voltage is obtained to exceed 14 V and the leakage current is controlled under 0.5 ${\mu}A$. The proposed integrated module with the application of the power MOSFET indicates the high performance of the protection IC, where the overcharge delay time and detection voltage are controlled within 1.1 s and 4.2 V, respectively.

Design of a New Thermal shut Down Protection Circuit for LED Driver IC Applications (LED 구동회로를 위한 새로운 과열방지회로 설계)

  • Heo, Yun-Seok;Jung, Jin-Woo;Park, Won-Kyoung;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5832-5837
    • /
    • 2011
  • In this paper, we designed a thermal shutdown block for LED applications using a 1 ${\mu}m$ CMOS process. The proposed thermal shutdown protection circuit has been designed with a shut-off temperature of $120^{\circ}C$ and a restart temperature of $90^{\circ}C$ which are suitable conditions for LED driver IC. Also, we got SPICE simulation results of the circuit about process variation of the semiconductor fabrication. From simulation data, process variation rate of the proposed circuit are within 7 % which are good results compared with conventional BJT current mirror type circuit. Finally, we confirmed that the thermal shutdown circuit has good thermal protection function within a LED driver IC.

Design of Power Factor Correction IC for 1.5kW System Power Module (1.5kW급 System Power Module용 Power Factor Correction IC 설계)

  • Kim, Hyoung-Woo;Seo, Kil-Soo;Kim, Ki-Hyun;Park, Hyun-Il;Kim, Nam-Kyun
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.499-500
    • /
    • 2008
  • In this paper, we design and implement the monolithic power factor correction IC for system power modules using a high voltage(50V) CMOS process. The power factor correction IC is designed for power applications, such as refrigerator, air-conditioner, etc. It includes low voltage logic, 5V regulator, analog control circuit, high-voltage high current output drivers, and several protection circuits. And also, the designed IC has standby detection function which detects the output power of the converter stage and generates system down signal when load device is under the standby condition. The simulation and experimental results show that the designed IC acts properly as power factor correction IC with efficient protective functions.

  • PDF

Design of the Noise Margin Improved High Voltage Gate Driver IC for 300W Resonant Half-Bridge Converter (잡음 내성이 향상된 300W 공진형 하프-브리지 컨버터용 고전압 구동 IC 설계)

  • Song, Ki-Nam;Park, Hyun-Il;Lee, Yong-An;Kim, Hyoung-Woo;Kim, Ki-Hyun;Seo, Kil-Soo;Han, Seok-Bung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.10
    • /
    • pp.7-14
    • /
    • 2008
  • In this paper, we designed the HVIC(High Voltage Gate Driver IC) which has improved noise immunity characteristics and high driving capability. Operating frequency and input voltage range of the designed HVIC is up to 500kHz and 650V, respectively. Noise protection and schmitt trigger circuit is included in the high-side level shifter of designed IC which has very high dv/dt noise immunity characteristic(up to 50V/ns). And also, rower dissipation of high-side level shifter with designed short-pulse generation circuit decreased more that 40% compare with conventional circuit. In addition, designed HVIC includes protection and UVLO circuit to prevent cross-conduction of power switch and sense power supply voltage of driving section, respectively. Protection and UVLO circuit can improve the stability of the designed HVIC. Spectre and Pspice circuit simulator were used to verify the operating characteristics of the designed HVIC.

Spice modelling of Direct Over Temperature Protection in Intelligent Power Module (IPM의 과열직접보호 기능의 IC화를 위한 Spice modelling)

  • Seo, Kil-Soo;Kim, Sang-Cheol;Kim, Nam-Keun;Kim, Eun-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1154-1156
    • /
    • 2003
  • 본 논문은 IPM의 구동부, 과열, 과전류, 단락 및 제어부의 부족전압 제어하는 IC의 설계중 Over-Temperature protection기능에 대한 것으로서 기존의 온도센서나 과열검출 Tr을 사용하지 않고, 온도에 따른 MOSFET의 Rds(on)변화를 검출하여 과열을 방지하는 Direct Over Temperature protection기능을 PSpice를 이용하여 modelling하고 simulation 한 결과에 대해서 기술하였다.

  • PDF

A Study on the Design of Green Mode Power Switch IC (그린 모드 파워 스위치 IC 설계에 관한 연구)

  • Lee, Woo-Ram;Son, Sang-Hee;Chung, Won-Sup
    • Journal of IKEEE
    • /
    • v.14 no.2
    • /
    • pp.1-8
    • /
    • 2010
  • In this paper, Green Mode Power IC is designed to reduce the standby power. The proposed and designed IC works for the Switch Mode Power Supply(SMPS) and has the function of PWM. To reduce the unnecessary electric power, burst mode and skip mode section are introduced and controlled by external power MOSFET to diminish the standby power. The proposed IC is designed and simulated by KEC 30V-High Voltage 0.5um CMOS Process. The structure of proposed IC is composed of voltage regulator circuit, voltage reference circuit, UVLO(Under Voltage Lock out) circuit, Ibias circuit, green circuit, PWM circuit, OSC circuit, protection circuit, control circuit, and level & driver circuit. Measuring the current consumption of each block from the simulation results, 1.2942 mA of the summing consumption current from each block is calculated and ot proved that it is within the our design target of 1.3 mA. The current consumption of the proposed IC in this paper is less than a half of conventional ICs, and power consumption is reduced to the extent of 1W in standby mode. From the above results, we know that efficiency of proposed IC is superior to the previous IC.

Three-phase Motor Drive IC for Automotive Applications (자동차용 3상 모터 드라이브 IC)

  • Jung, Jin-Soo;Park, Shi-Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.7
    • /
    • pp.563-566
    • /
    • 2009
  • This paper presents a motor drive IC for automotive applications. The drive IC is dedicated to control and drive external MOSFETs which directly drive 3-phase motor with a high current. In case of driving high-side power switches, the bootstrap topology is widely used. however, it requires three bootstrap diode and three capacitor respectively. And it needs a minimum charging time to maintain high-side voltage. The motor drive IC uses a charge-pump circuit for all three high-side voltage with various protection schemes for automotive applications.

A Study of White-LED Driver IC for Mobile Applications (모바일용 White-LED Driver IC에 관한 연구)

  • Ko, Young-Seok;Park, Shi-Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.7
    • /
    • pp.572-575
    • /
    • 2009
  • In this study, we proposed WLED(White-Light Emitting Diode) driver IC for mobile applications. This IC drove WLED for mobile applications with low input voltage and high efficiency by using boost converter. The device was designed by using boost converter applied current-mode control algorithm and provided PWM(Pulse Width Modulation) & analog dimming. Designed IC consisted of bias block, drive block, control block, protection block. We confirmed this device worked well through a application PCB (Printed Circuit Board) test.

Three-phase Motor Drive IC for automotive applications (자동차용 3상 모터 드라이브 IC)

  • Jung, Jin-Soo;Hwang, Seung-Hyun;Park, Shi-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.41-42
    • /
    • 2009
  • This paper presents a motor drive IC for automotive applications. The drive IC is dedicated to control and drive external MOSFETs which directly drive 3-phase motor with a high current. In case of driving high-side power switches, the bootstrap topology is widely used. However, it requires three bootstrap diode and three capacitor respectively. And it needs a minimum charging time to maintain high-side voltage. The motor drive IC uses a charge-pump circuit for all three high-side voltage with various protection schemes for automotive applications.

  • PDF