• Title/Summary/Keyword: IC packaging design

Search Result 33, Processing Time 0.022 seconds

Thermo-Mechanical Reliability of TSV based 3D-IC (TSV 기반 3차원 소자의 열적-기계적 신뢰성)

  • Yoon, Taeshik;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.35-43
    • /
    • 2017
  • The three-dimensional integrated circuit (3D-IC) is a general trend for the miniaturized and high-performance electronic devices. The through-silicon-via (TSV) is the advanced interconnection method to achieve 3D integration, which uses vertical metal via through silicon substrate. However, the TSV based 3D-IC undergoes severe thermo-mechanical stress due to the CTE (coefficient of thermal expansion) mismatch between via and silicon. The thermo-mechanical stress induces mechanical failure on silicon and silicon-via interface, which reduces the device reliability. In this paper, the thermo-mechanical reliability of TSV based 3D-IC is reviewed in terms of mechanical fracture, heat conduction, and material characteristic. Furthermore, the state of the art via-level and package-level design techniques are introduced to improve the reliability of TSV based 3D-IC.

A Study on the/ Correlation Between Board Level Drop Test Experiment and Simulation

  • Kang, Tae-Min;Lee, Dae-Woong;Hwang, You-Kyung;Chung, Qwan-Ho;Yoo, Byun-Kwang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.2
    • /
    • pp.35-41
    • /
    • 2011
  • Recently, board level solder joint reliability performance of IC packages during drop impact becomes a great concern to semiconductor and electronic product manufacturers. The handheld electronic products are prone to being dropped during their useful service life because of their size and weight. The IC packages are susceptible to solder joint failures, induced by a combination of printed circuit board (PCB) bending and mechanical shock during impact. The board level drop testing is an effective method to characterize the solder joint reliability performance of miniature handheld products. In this paper, applying the JEDEC (JESD22-B111) standard present a finite element modeling of the FBGA. The simulation results revealed that maximum stress was located at the outermost solder ball in the PCB or IC package side, which consisted well with the location of crack initiation observed in the failure analysis after drop reliability tests.

LCD Driver IC Assembly Technologies & Status

  • Shen, Geng-shin
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.09a
    • /
    • pp.21-30
    • /
    • 2002
  • According the difference of flex substrate, (reel tape), there are three kind assembly types of LCD driver IC is COG, TCP and COF, respectively. The TCP is the maturest in these types for stability of raw material supply and other specification. And TCP is the major assembly type of LCD driver IC and the huge demand from Taiwan's large TFT LCD panel house since this spring. But due to its package structure and the raw material applied in this package, there is some limitation in fine pitch application of this package type, (TCP). So, COF will be very potential in compact and portable application comparison with TCP in the future. There are three kinds assembly methods in COF, one is ACF by using the anisotropic conductive film to connect the copper lead of tape and gold bump of IC, another is eutectic bonding by using the thermo-pressure to joint the copper lead of tape and gold bump of IC, and last is NCP by using non-conductive paste to adhere the copper lead of tape and gold bump of IC. To have a global realization, this paper will briefly review the status of Taiwan's large TFT panel house, the internal driver IC design house, and the back-end assembly house in the beginning. The different material property of raw material, PI tape is also compared in the paper. The more detail of three kinds of COF assembly method will be described and compared in this paper.

  • PDF

Thermal Management on 3D Stacked IC (3차원 적층 반도체에서의 열관리)

  • Kim, Sungdong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.5-9
    • /
    • 2015
  • Thermal management becomes serious in 3D stacked IC because of higher heat flux, increased power generation, extreme hot spot, etc. In this paper, we reviewed the recent developments of thermal management for 3D stacked IC which is a promising candidate to keep Moore's law continue. According to experimental and numerical simulation results, Cu TSV affected heat dissipation in a thin chip due to its high thermal conductivity and could be used as an efficient heat dissipation path. Other parameters like bumps, gap filling material also had effects on heat transfer between stacked ICs. Thermal aware circuit design was briefly discussed as well.

The Effects of Cu TSV on the Thermal Conduction in 3D Stacked IC (3차원 적층 집적회로에서 구리 TSV가 열전달에 미치는 영향)

  • Ma, Junsung;Kim, Sarah Eunkyung;Kim, Sungdong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.3
    • /
    • pp.63-66
    • /
    • 2014
  • In this study, we investigated the effects of Cu TSV on the thermal management of 3D stacked IC. Combination of backside point-heating and IR microscopic measurement of the front-side temperature showed evolution of hot spots in thin Si wafers, implying 3D stacked IC is vulnerable to thermal interference between stacked layers. Cu TSV was found to be an effective heat path, resulting in larger high temperature area in TSV wafer than bare Si wafer, and could be used as an efficient thermal via in the thermal management of 3D stacked IC.

On-chip Decoupling Capacitor for Power Integrity (전력 무결성을 위한 온 칩 디커플링 커패시터)

  • Cho, Seungbum;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.1-6
    • /
    • 2017
  • As the performance and density of IC devices increase, especially the clock frequency increases, power grid network integrity problems become more challenging. To resolve these power integrity problems, the use of passive devices such as resistor, inductor, and capacitor is very important. To manage the power integrity with little noise or ripple, decoupling capacitors are essential in electronic packaging. The decoupling capacitors are classified into voltage regulator capacitor, board capacitor, package capacitor, and on-chip capacitor. For next generation packaging technologies such as 3D packaging or wafer level packaging on-chip MIM decoupling capacitor is the key element for power distribution and delivery management. This paper reviews the use and necessity of on-chip decoupling capacitor.

The Study of If Frequency Synthesizer IC Design for Digital Cellular Phone (디지털 이동통신단말기용 IF 주파수합성기 IC개발에 관한 연구)

  • 이규복;정덕진
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.1
    • /
    • pp.19-25
    • /
    • 2001
  • In this paper, the design and simulation results of IF frequency synthesizer section has been described. We has been used 0.8 $\mu\textrm{m}$ BiCMOS device and library of the AMS. IF frequency synthesizer section has been contained IF VCO, Phase Detector, Divide_by_8, Charge Pump and Loop Filter. IF frequency synthesizer has been shown operating voltage of 2.7~3.6 V, control voltage of 0.5~2.7 V and supply current of 11 mA. The measured results have been showed good agreement with the simulation results about supply current.

  • PDF

Design and Analysis of NCP Packaging Process for Fine-Pitch Flexible Printed Circuit Board (미세피치 연성인쇄회로기판 대응을 위한 NCP 패키징 공정설계 및 분석)

  • Shim, Jae-Hong;Cha, Dong-Hyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.172-176
    • /
    • 2010
  • Recently, LCD (Liquid Crystal Display) requires various technical challenges; high definition, high quality, big size, and low price. These demands more pixels in the fixed area of the LCD and very fine lead pitch of the driving IC which controls the pixels. Therefore, a new packaging technology is needed to meet such technical requirement. NCP (Non Conductive Paste) is one of the new packaging methods and has excellent characteristics to overcome the problems of the ACF (Anisotropic Conductive Film). In this paper, we analyzed the process of the NCP for COF (Chip on FPCB) and proposed the key design parameters of the NCP process. Through a series of experiments, we obtained the stable values of the design parameters for successful NCP process.

A Study of on Minimizing the Number of V\ulcorner/V\ulcorner Pins in Simultaneous Switching Environment (동시 스위칭 환경에서 V\ulcorner/V\ulcorner Pin 수의 최소화를 위한 연구)

  • Bae, Yun-Jeong;Lee, Yun-Ok;Kim, Jae-Ha;Kim, Byeong-Gi
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.7
    • /
    • pp.2179-2187
    • /
    • 2000
  • This paper provides a heuristic analysis technique which determines an optimal number of V\ulcorner/V\ulcorner pads meeting allowable Simultaneous Switching Noise(SN) budget, early in the design phase. Until now, in determining the number of V\ulcorner/V\ulcorner pads, designers had to simulate packaging models case by case in the design phase or roughly allocate the power/ground pins in an inaccurate way according to typical design rules. However, due to the high density and frequency trends of IC technologies, the V\ulcorner/V\ulcorner pads allocation method can affect an adverse effect on IC operations, which requires more accurate and efficient methods be devised. Thus, this paper proposes an analytic V\ulcorner/V\ulcorner pads calculation method that gives a practical help for packaging designs early in the design phase. The proposed method is applied to a design example of a 1/8x208 pin plastic quad flat package (PQFP) and the results are verified through simulation using HSPICE.

  • PDF