Browse > Article
http://dx.doi.org/10.6117/kmeps.2017.24.3.001

On-chip Decoupling Capacitor for Power Integrity  

Cho, Seungbum (Graduate School of Nano-IT Design Convergence, Seoul National University of Science and Technology)
Kim, Sarah Eunkyung (Graduate School of Nano-IT Design Convergence, Seoul National University of Science and Technology)
Publication Information
Journal of the Microelectronics and Packaging Society / v.24, no.3, 2017 , pp. 1-6 More about this Journal
Abstract
As the performance and density of IC devices increase, especially the clock frequency increases, power grid network integrity problems become more challenging. To resolve these power integrity problems, the use of passive devices such as resistor, inductor, and capacitor is very important. To manage the power integrity with little noise or ripple, decoupling capacitors are essential in electronic packaging. The decoupling capacitors are classified into voltage regulator capacitor, board capacitor, package capacitor, and on-chip capacitor. For next generation packaging technologies such as 3D packaging or wafer level packaging on-chip MIM decoupling capacitor is the key element for power distribution and delivery management. This paper reviews the use and necessity of on-chip decoupling capacitor.
Keywords
Decoupling capacitor; Power integrity; Power network management; Passive devices; Dielectric constant;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. Popovich, "High Performance Power Distribution Networks with on-Chip Decoupling Capacitors for Nanoscale Integrated Circuits(in USA.)", in Ph.D. Thesis, Univ. Rochester, NY (2007).
2 M. Popovich, and E. G. Froed,am, "Decoupling Capacitors for Multi-Voltage Power Distribution Systems", IEEE Trans. VLSI Systems., 14(3), 217 (2006).   DOI
3 S. Ramesh, B. A. Shutzberg, and C. Huang, "Dielectric Nanocomposites for Integral Thin Film Capacitors: Materials Design, Fabrication and Integration Issues", IEEE Trans. Adv. Packag., 26(1), 17 (2003).   DOI
4 T. Lenihan, L. Schaper, and Y. Shi, "Embedded Thin Film Resistors, Capacitors and Inductors in Flexible Polyimide Films", Proc. 46th Electron. Compon. Technol. Conf., 119 (1996).
5 F. Wang, and Y. Wang, "Development and Utilization of Integral Thin Film Capacitors", Procedia Environ. Sci., 18, 871 (2013).   DOI
6 A. M. Saleem, G. Goransson, and V. Des,aros, "CMOS Compatible on-Chip Decoupling Capacitor Based on Vertically Aligned Carbon Nanofibers", Solid State Electron., 107, 15 (2015).   DOI
7 T. Ando, E. Carther, and P. Jamison, "CMOS Compatible MIM Decoupling Capacitor with Reliable sub-nm EOT High-k Stacks for the 7 nm Node and Beyond", Proc. IEEE Int. Electron Devices Meeting (2016).
8 G. Carchon, K. Vaesen, and S. Brebets, "Multilayer Thin-Film MCM-D for the Integration of High-Performance RF and Microwave Circuits", IEEE Trans. Compon., Packag., Manuf. Technol., 24(3), 510 (2001).   DOI
9 P. Chahal, R. R. Tummara, and M. G. Allen, "A Novel Integrated Decoupling Capacitor for MCM-L Technology", IEEE Trans. Compon., Packag., Manuf. Technol., Part B., 21(2), 184 (1998).   DOI
10 D. DimosI, S. Llockwood, and R. Schwartz, "Thin-Film Decoupling Capacitors for Multichip Modules", IEEE Trans. Compon., Packag., Manuf. Technol., Part B., 18(1), 174 (1995).
11 G. Banhegyi, "Comparison of Electrical Mixture Rules for Composites", Colloid. Polym. Sci., 264(12), 1030 (1986).   DOI
12 Y. Rao, and C. Wong, "Material Characterization of a highdielectric- constant polymer-ceramic Composite for Embedded Capacitor for RF Applications", J. Appl. Polym. Sci., 92(4), 2228 (2004).   DOI
13 K. Fischer, M. Agostimelli, and C. Allen, "Low-k Interconnect Stack with Multi-Layer Air Gap and Tri-Metal-Insulator- Metal Capacitors for 14nm High Volume Manufacturing", Proc. IEEE Int. Intercon. Technol. Conf., (2015).
14 K. Kurhara, T. Shioga, and J. D. Banecki, "Electrical Properties of Low-Inductance Barium Strontium Titanate Thin Film Decoupling Capacitors", J. Eur. Ceram. Soc., 24(6), 1873 (2004).   DOI
15 B. Lestriez, A. Maazouz, and J. Gerard, "Is the Maxwell-Sillars- Wagner Model Reliable for Describing the Dielectric Properties of a core-shell particle-epoxy System?", Polymer., 39(26), 6733 (1998).   DOI
16 J. Xu, and C. Wong, "Characterization and Properties of an organic-inorganic Dielectric Nanocomposite for Embedded Decoupling Capacitor Applications", Composites, Part A., 38(1), 13 (2007).   DOI
17 S. Cimno, A. Padovani, and L. Larcher, "A Study of the Leakage Current in TiN/$HfO_2$/TiN Capacitors", Microelectron. Eng., 95, 71.(2012).   DOI
18 P. Zhou, K. Sridharan, and S. S. Sapatnekar, "Optimizing Decoupling Capacitors in 3D Circuits for Power Grid Integrity", IEEE Design & Test of Computers., 26(5), 15 (2009).   DOI
19 M. Kang, K. Cho, and S. Nahm, "Effects of Vanadium Substitution on the Electrical Performance of Amorphous $SrBi_2$-$Ta_2O_9$ Thin-Film Capacitors", Scr. Mater., 7745 (2014).
20 T. Bertaud, C. Bermond, and S. Blonkowski, "Electrical Characterization of Advanced MIM Capacitors with $ZrO_2$ Insulator for High-Density Packaging and RF Applications", IEEE Trans. Compon., Packag., Manuf. Technol., 2(3), 502 (2012).   DOI
21 J. H. Han, S. Han, and W. Lee, "Improvement in the Leakage Current Characteristic of Metal-Insulator-Metal Capacitor by Adopting RuO2 Film as Bottom Electrode", Appl. Phys. Lett., 99(2), 022901 (2011).   DOI
22 B. Ma, D. Kwon and M. Narayanan, "Dielectric Properties of PLZT Film-on-Foil Capacitors", Mater Lett., 62(20), 3573 (2008).   DOI
23 J. Choi, C. Choi, and K. Cho, "Effect of Oxygen Vacancy and Mn-Doping on Electrical Properties of $$ Thin Film Grown by Pulsed Laser Deposition", Acta Mater., 57(8), 2454 (2009).   DOI
24 X. Zhu, E. Defay, and Y. Lee, "High Permittivity $Bi_{24}Fe_2O_{39}$ Thin Films Prepared by a Low Temperature Process", Appl. Phys. Lett., 97(23), 232903 (2010).   DOI
25 J. Wang, J. Lu, and Y. Li, "Placement of Decoupling Capacitor on Packages Based on Effective Decoupling Radius", 18th IEEE Electron. Packag. Technol. Conf. (2016).
26 J. Y. Choi, and M. Swaminathan, "Decoupling Capacitor Placement in Power Delivery Networks using MFEM", IEEE Trans. Compon., Packag., Manuf. Technol., 1(10), 1651 (2011).   DOI
27 M. B. Healy, and S. K. Lim, "Distributed TSV topology for 3-D powersupply networks", IEEE Trans. Very Large Scale Integr. Syst., 20(11), 2066 (2012).   DOI
28 M. Popovich, and E. G. Fredman, "Impedance Characteristics of Decoupling Capacitors in Multi-Power Distribution Systems", Proc. 11th IEEE Int. Conf. Electronics, Circuits Systems., (2004).
29 X. Zhao, M. R. Scheuermann, and S. K. Lim, "Analysis and Modeling of DC Current Crowding for TSV-Based 3-D Connections and Power Integrity", IEEE Trans. Compon., Packag., Manuf. Technol., 4(1), 123.(2014).   DOI
30 Y. C. Tan, C. M. Tan, X. W. Zhang, T. C. Chai, and D. Q. Yu, "Electromigration performance of through silicon via (TSV), a modeling approach", Microelectron. Rel., 50(9-11), 1336 (2010).   DOI
31 K. Oh, J. Ma, and S. Kim, "Interconnect Process Technology for High Power Delivery and Distribution", J. Microelectron. Packag. Soc., 19(3), 9 (2012).   DOI
32 G. Schrom, P. Hazucha, and J. Hahn, "Feasibility of Monolithic and 3D-Stacked DC-DC Converters for Microprocessors in 90 nm Technology Generation", Proc. Int. Symp. Low Power Electron. Design., 263 (2004).
33 J. Sun, J. Lu, and D. Giuliano, "3D Power Delivery for Microprocessors and High-Performance ASICs", Appl. Power Electron. Conf., 127 (2007).
34 L. H. Allen, and M. Y. Zhang, "Solutions to current crowding in circular vias for contact resistance measurements", J. Appl. Phys., 70(1), 253 (1991).   DOI