• 제목/요약/키워드: IAA-producing Bacteria

검색결과 21건 처리시간 0.025초

Indole-3-acetic acid (IAA) 생성 Arthrobacter sp.의 분리 및 식물 생육촉진 효과 (Isolation of Indole-3-acetic acid (IAA) producing Arthrobacter sp. and plant growth promotion effect)

  • 김다솜;신호용;한송이
    • 한국응용과학기술학회지
    • /
    • 제39권6호
    • /
    • pp.831-838
    • /
    • 2022
  • 농업 재배지 토양으로부터 auxin 생성세균 KSD16, KSD33 그리고 KSD36를 분리하였다. 분리균주 KSD16, KSD33 그리고 KSD36 는 16S rRNA 유전자 계통분석을 통해 Arthrobacter 속으로 분류되었다. 이들 균주는 R2A배지에 0.1% L-tryptophan를 첨가한 배지에서 28℃, 48 시간 배양한 결과, auxin의 일종인 indole-3-acetic acid (IAA)를 204.4 mg L-1 생성하는 것으로 확인되었다. IAA 생성세균의 녹두종자 발아에 미치는 영향을 확인한 결과, Arthrobacter 속 균주 KSD16, KSD33 그리고 KSD36 는 대조군에 비해 뿌리길이와 발근수가 증가하였다. Arthrobacter 속 균주의 녹두 성장촉진 효과를 확인한 결과, 녹두의 발아율이 대조군보다 73.4 % 증가하는 특징을 나타내었다.

논토양의 Indole Acetic Acid 생성능 (Indole Acetic Acid Production of Rice Paddy Soils)

  • 서장선;노형준;최수임
    • 한국토양비료학회지
    • /
    • 제39권6호
    • /
    • pp.386-391
    • /
    • 2006
  • 본 연구는 생물학적 토양건전성평가 지표로서의 토양의 탈수소효소 생성균 밀도와 IAA생성능의 적용 가능성을 살펴보고자, 무시용구, 질소 단용구, 3요소 시용구 및 퇴비 3요소 시용구로 처리된 논토양에서의 탈수소효소 생성균 및 토양의 IAA 생성능의 변화에 대해 조사하였다. 비색법과 HPLC법 간의 IAA분석치는 유의성 있는 정의 상관관계가 있었으며, 시험토양의 IAA생성량은 비색법 $0.83{\sim}1.23{\mu}g\;IAA\;g^{-1}h^{-1}$, HPLC법 $0.80{\sim}1.29{\mu}g\;IAA\;g^{-1}h^{-1}$로 분석법 간에 거의 비슷한 수준을 보였다. 탈수소효소생성 토양세균과 토양의 IAA생성능은 대조구와 N 단용구에 비해 NPK구 및 CNPK구에서 유의적으로 높은 결과를 보였으며, 탈수소효소 생성세균과 토양의 IAA 생성능 간에는 유의성이 높은 정의 상관관계를 보였다.

Expression of Auxin Response Genes SlIAA1 and SlIAA9 in Solanum lycopersicum During Interaction with Acinetobacter guillouiae SW5

  • Kwon, Hyeok-Do;Song, Hong-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권6호
    • /
    • pp.903-909
    • /
    • 2015
  • Indole-3-acetic acid (IAA) production is a typical mechanism of plant growth promotion by some rhizobacteria. However, a functional genomic study is necessary to unravel the function and mechanism of IAA signaling during rhizobacteria-plant interactions. In this study, the expression of SlIAA1 and SlIAA9 among the auxin response genes in tomato was examined during the interaction between IAA-producing Acinetobacter guillouiae SW5 and tomato plants. When 3-day grown tomato seedlings were treated for 30 min with 10~100 µM of IAA produced by bacteria from tryptophan, the relative mRNA levels of SlIAA1 and SlIAA9 increased significantly compared with those of the control, demonstrating that IAA produced by this bacterium can induce the expressions of both genes. Inoculation of live A. guillouiae SW5 to tomato seedlings also increased the expressions of SlIAA1 and SlIAA9, with more mRNA produced at higher bacterial density. In contrast, treatment of tomato seedlings with dead A. guillouiae SW5 did not significantly affect the expression of SlIAA1and SlIAA9. When 3-day bacterial culture in tomato root exudates was administered to tomato seedlings, the relative mRNA level of SlIAA1 increased. This result indicated that the plant may take up IAA produced by bacteria in plant root exudates, which may increase the expression of the auxin response genes, with resulting promotion of plant growth.

Suppression of Morningglory (Ipomoea Hederacea) Growth by Rhizobacteria and IAA-3-ACETIC Acid

  • Kim, Su-Jung
    • 한국유기농업학회지
    • /
    • 제14권4호
    • /
    • pp.411-420
    • /
    • 2006
  • Indole-3-acetic acid (IAA) biosynthesis by bacteria occurs widely in rhizospheres. Bacterial species able to synthesize IAAmay be exploited for beneficial interactions in crop management systems. The objective of this study was to determine the response of ivyleaf morningglory (Ipomoea hederacea) seedlings to IAA and to an IAA-producing rhizobacterum, Bradyrhizobium japonicum isolate GD3. IAA solution and isolate GD3 suppression of seedling growth measured as radicle length and biomass depended on IAA concentration. Seedling radicle length was significantly reduced by ca. 29% with more than $1.0{\mu}M$ of IAA solution, compared to the control, 48 h after application. The cell concentration at 50% growth reduction ($GR_{50}$) of the seedling radicle was IAA production by isolate GD3 at $10^{4.82}\;cfu$, the cell concentration for 50% growth reduction ($GR_{50}$) of seedling radicle was 0.24 iM, which was much lower than the IAA solution concentration ($117.48{\mu}M$) required for $GR_{50}$. Therefore, excess IAA production by isolate GD3 may be more detrimental to morningglory radicle growth than standard IAA solution. Results confirmed involvement of IAA in suppressive effects of isolate GD3 on morning-glory seedlings grown in a hydroponic system.

  • PDF

Rhizobacterial Populations of Glyphosate-Resistant Soybean (Glycine Max) as Affected by Glyphosate and Foliar Amendment

  • Kim, Su-Jung
    • 한국환경농학회지
    • /
    • 제25권3호
    • /
    • pp.262-267
    • /
    • 2006
  • Increased application of glyphosate (Gly) in glyphosate-resistant (GR) soybean cropping systems may affect rhizospheric microorganisms including IAA-producing rhizobacteria (IPR) and their effect on the growth of soybean. This field experiment was conducted to assess IPR populations in the rhizosphere of GR soybean ('Roundup-Ready' DeKalb DKB38-52) treated with glyphosate and foliar amendment treatments such as $PT21^{(R)}$ (urea solution with N 21 %) and $Grozyme^{(R)}$ (Biostimulant: mixtures of micro nutrients and enzymes). Effects of herbicide, sampling date, and their interaction on total bacterial numbers were significant (P < 0.001, 0.001, 0.013, respectively). Total bacteria (TB) numbers were increased with glyphosate treatment at 20 d after application and highest TB populations were associated with $Grozyme^{(R)}$ application, possibly due to the additional substrate from this product. The IPR of the soybean rhizosphere was significantly affected by herbicide, sampling date, and the herbicide*foliar amendment interaction. The ratios of numbers of IPR to TB ranged from 0.79 to 0.99 across the sampling dates irrespective of treatments. IPR numbers were slightly hindered by glyphosate application regardless of foliar amendment.

Isolation and Characterization of Plant Growth Promoting Rhizobacteria From Button Mushroom Compost

  • Oh, Sung-Hoon;Lee, Chang-Jung;Yoon, Min-Ho
    • 농업과학연구
    • /
    • 제43권1호
    • /
    • pp.100-108
    • /
    • 2016
  • An auxin-producing bacteria (strain 5-1) was isolated from button mushroom compost in Boryeong-Si, Chungcheongnam-Do. The 5-1 strain was classified as a novel strain of Enterobacter aerogenes based on chemotaxonomic and phylogenetic analyses. The isolated E. aerogenes 5-1 was confirmed to produce indole-3-acetic acid (IAA), one of the auxin hormones, using TLC and HPLC analyses. When the concentration of IAA was assessed by performing HPLC quantitative analysis, a maximum concentration of IAA of $109.9mgL^{-1}$ was detected in the culture broth incubated in R2A medium containing 0.1% L-tryptophan for 24 h at $35^{\circ}C$. Acidification of the culture was deemed caused by an increase of IAA because a negative relationship between IAA production and pH was observed. Supplementation with a known precursor of IAA production, L-tryptophan, appeared to induce maximal production at 0.1% concentration, but it reduced production at concentrations above 0.2%. To investigate the growth-promoting effects to crops, the culture broth of E. aerogenes 5-1 was used to inoculate water cultures and seed pots of mung bean and lettuce. In consequence, adventitious root induction and root growth of mung bean and lettuce were two times higher than those of the control.

벼(Oryza sativa L.)의 잎 면으로부터의 IAA를 생성하는 Methylotrophic Bacteria의 분리 선별 및 특성 비교 (Isolation and Characterization of the IAA Producing Methylotrophic Bacteria from Phyllosphere of Rice Cultivars(Oryza sativa L.))

  • 이규회;;김충우;이형석;;사동민
    • 한국토양비료학회지
    • /
    • 제37권4호
    • /
    • pp.235-244
    • /
    • 2004
  • 국내 3지역으로부터 수집한 19종의 벼 잎에 서식하는 methylo-trophlc bacteria의 군집성을 비교하였다. Methanol에 따른 특징적인 생장을 나타내는 분홍색 색소를 띤 19개의 균체를 분리하였다. 분리된 이들 균체들은 Bergey의 방법에 따라 각각 생리, 생화학적 특성들을 조사 하였으며, 표현형들은 37가지의 특성들을 계통분석법을 통해 명찰히 구분하여, 최종 별개의 4군(cluster)으로 분리하였다. 대조균주인 M, extor벼둔 AM1과 M. fujisawaense KACC10744는 각각 IV군과 III군에 속해있다. I군에 속해있는 균체들은 nitrate의 환원을 근거로 하여 구분하였으며, 4개의 분리균주는 NaCl 0.5M 농도까지 염에 대한 내성을 보였다. I군과 III군의 균체들은 탄소원으로 methane을 이용하는 특성을 가졌으며, 4군의 대부분의 균체들은 탄소원으로 단당류, 이당류, 다당류를 이용하였다. L-tryptophan의 존재 하에 모든 균체들의 indole-3-acetlc aclu (IAA) 생성 실험에서는 선별균체 중 8균체만이 IAA를 생성하였다. 게다가 배지의 질소원은 IAA의 생성에 영향을 미치는 것으로 관찰되었으며, 질소원으로 $(NH_4)_2SO_4$를 이용하였을 때 IAA 생성은 최대 20-30배까지 증가하였으나 $KNO_3$, $NH_4NO_3$ 그리고 $NH_4$ CI을 질소원으로 사용하였을 때에는 IAA 생성에 큰 영향을 미치지 않았다. 선별된 methylo trophic bacteria를 뿌리에 접종한 결과 균체가 생성한 IAA 영향으로 식물체의 뿌리와 줄기의 길이 그리고 곁뿌리의 수가 상당히 증가하였으며, 균주를 접종한 벼 종자의 초기 뿌리 생장은 균을 접종하지 않은 종자보다 평균 27-56% 증가하였다. 높은 농도의 IAA ($400{\mu}g\;mL^{-1}$)를 처리했을 때는 오히려 뿌리의 생장을 억제 시켰으나, $10-200{\mu}g\;mL^{-1}$ 농도의 IAA를 처리했을 때는 뿌리 생장을 촉진시켰다. 이러한 결과는 박테리아가 생산하는 IAA가 식물 뿌리생장에 중요한 역할을 한다는 것을 의미한다.

Characterization of auxin production plant growth promotion by a bacterium isolated from button mushroom compost

  • Yoo, Ji-Yeong;Lee, Heon-Hak;Han, Chang-Hoon;Yoon, Min-Ho
    • 한국버섯학회지
    • /
    • 제15권1호
    • /
    • pp.8-13
    • /
    • 2017
  • An auxin-producing bacterial strain, designated 4-3, was isolated from waste button mushroom compost in Boryeong-si, Chungnam. The strain 4-3 was classified as a novel strain of Leucobacter tardus, based on chemotaxonomic and phylogenetic analyses. TLC and HPLC the isolated L. tardus strain 4-3 produced indole-3-acetic acid (IAA), the auxin. Maximum IAA productionof $94.3mg\;L^{-1}$ was detected for bacteria cultured in R2A medium with 0.1% l-tryptophan, incubated for 24 h at $35^{\circ}C$. Negative correlationwas observed between IAA production and pH of the culture medium, indicating that the increase inIAA caused acidification ofthe medium. The effect of supplementation with varying concentrations of l-tryptophan, a known precursor of IAA, was also assessed. production was maximal at 0.1% l, but decreased at lconcentrations above 0.2%. To investigate the plant growth-promoting effects of the bacterium, L. tardus strain 4-3 culture broth was used to inoculate water cultures and seed pots of mung bean. We found thatadventitious root induction and root growth were 2.2-times higher in thethan in the non-inoculated plants.

Optimization of Indole-3-Acetic production by phosphate solubilization bacteria isolated from waste mushroom bed of Agaricus bisporus

  • Walpola, Buddhi Charana;Noh, Jae-Geun;Kim, Chan Kyem;Kyung, Ki-Cheon;Kong, Won-Sik;Yoon, Min-Ho
    • 한국버섯학회지
    • /
    • 제11권2호
    • /
    • pp.53-62
    • /
    • 2013
  • A total of 35 phosphate solubilizing bacterial strains were isolated from waste mushroom bed of Agaricus bisporus in Buyeo-Gun, Chungnam and screened for the production of indole acetic acid (IAA). The best IAA producing strain was identified as Pantoea rodasii using 16S rRNA analysis. In addition to the IAA production, this strain could act as an efficient phosphate solubilizer (1100 ${\mu}g$ $ml^{-1}$ after 5 days of incubation) also. The selected strain was cultured under different conditions in order to assess the optimum conditions for maximum IAA production. The nutrient broth (NB) medium was recorded as the best medium, where the maximum IAA production (229 ${\mu}g$ $ml^{-1}$) was recorded at the start of stationary phase (12 hours after inoculation) of the bacteria growth. The performance of the strain was found to be maximum at the temperature of $30^{\circ}C$ followed by $25^{\circ}C$. IAA production was found to be increased with increasing tryptophan concentration (from 0.1 to 0.6%), however beyond this limit, a slight reduction in IAA production was observed. The strains' ability to produce IAA was further confirmed by extraction of crude IAA and subsequent TLC analysis. A specific spot from the extracted IAA preparation was found corresponding with the standard spot of IAA with same $R_f$ value. The results of HPLC analysis conducted in identifying and quantifying the IAA production more precisely, are in agreement with the results of the assessment done with colorimetric method. As revealed by the results of the pot experiment, the isolated strain could significantly enhance the growth (as measured by shoot and root growth) of mung bean plants compared to that of non-inoculated plants. Therefore it can be concluded that the present strain, Pantoea rodasii has great potential to be used as bio-inoculants.

광합성세균 Rhodobater capsulatus PS-2의 대량배양 최적화 및 대사산물 분석 (Mass Cultivation and Secondary Metabolite Analysis of Rhodobacter capsulatus PS-2)

  • 봉기문;김종민;유재홍;박인철;이철원;김평일
    • KSBB Journal
    • /
    • 제31권3호
    • /
    • pp.158-164
    • /
    • 2016
  • Plant growth promoting (PGP) hormones, which are produced in a small quantity by bacteria, affect in plant growth and development. PGPs play an important role on the crop productivity in agricultural field. In this study, a photosynthetic bacterial strain producing the PGP was isolated from paddy soil. Bacterial isolate was gram negative, rod-shaped and motility positive. From the 16s rRNA gene sequence analysis, the isolate was identified as Rhodobacter capsulatus PS-2. The mass cultivation of R. capsulatus PS-2 was optimized by considering of the carbon, nitrogen and inorganic salt sources. Optimal medium composition was determined as Na-succinate 4.5 g, yeast extract 5 g, $K_2HPO_4$ 1 g, $MgSO_4$ 5 g, per liter. From the result of 500 L fermentation for 2 days using the optimal medium, the viable cells were $8.7{\times}10^9cfu/mL$. R. capsulatus PS-2 strain produced the carotenoid and indole-3-acetic acid (IAA). The carotenoid extraction and quantitative analysis were performed by HCl-assisting method. Total carotenoid contents from R. capsulatus PS-2 culture broth were measured as $7.02{\pm}0.04$ and $6.93{\pm}0.05mg/L$ under photoheterotrophic and chemoheterotrophic conditions, respectively. To measure the productivity of IAA, colorimetric method was employed using Salkowski reagent at optical density 535 nm. The results showed that the highest content of IAA was $197.44{\pm}5.92mg/L$ in the optimal medium supplemented with 0.3% tryptophan.