Browse > Article

Isolation and Characterization of the IAA Producing Methylotrophic Bacteria from Phyllosphere of Rice Cultivars(Oryza sativa L.)  

Lee, Kyu-Hoi (Department of Agricultural Chemistry, Chungbuk National University)
Munusamy , Madhaiyan (Department of Agricultural Chemistry, Chungbuk National University)
Kim, Chung-Woo (Department of Agricultural Chemistry, Chungbuk National University)
Lee, Hyoung-Seok (Department of Agricultural Chemistry, Chungbuk National University)
Selvaraj, Poonguzhali (Department of Agricultural Chemistry, Chungbuk National University)
Sa, TongMin (Department of Agricultural Chemistry, Chungbuk National University)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.37, no.4, 2004 , pp. 235-244 More about this Journal
Abstract
In this study, we compared the levels of methylotrophic bacterial community diversity in the leaf samples of 19 rice cultivars collected from three regions of Korea. Nineteen pink pigmented isolates showing characteristic growth on methanol were obtained. Physiological and biochemical characters of each isolate were examined according to methods described in Bergey's Manual of Systematic Bacteriology. When phylotypes were defined by performing numerical analysis of 37 characteristics, four distinct clusters were formed. The two reference strains, Methylobacterium extorquens AM1 and Methylobacterium fujisawaense KACC10744 were found to group under cluster IV and cluster III respectively. Cluster I diverged on the basis of nitrate reduction and four isolates showed tolerance upto 0.5 M NaCl concentrations. Two strains in cluster I and III were found to possess methane utilizing properties. Most of the isolates in all the four clusters utilized monosaccharides, disaccharide and polyols as carbon source. When the isolates were subjected for indole-3-acetic acid (IAA) analysis in the presence of L-tryptophan, only 8 isolates exhibited IAA production. In addition, the nitrogen source in the medium was found to influence the IAA production. Addition of $(NH_4)_2SO_4$ in the medium led to a 2 to 30 fold increase in the indole synthesis. However, $KNO_3$, $NH_4NO_3$ and $NH_4Cl$ substitution did not significantly stimulate the synthesis of IAA in the growth medium. Result of gnotobiotic root elongation assay significantly increased roots and shoots lengths, and number of lateral roots, which is mediated by IAA production in the culture medium. The rice seedlings primary roots from seeds treated with methylotrophic isolates were on average 27 to 56% longer than the roots from seeds treated with the uninoculated seeds. In addition, application of different high concentrations of authentic IAA ($400g\;mL^{-1}$) to roots of rice seedlings inhibited root growth. However, the IAA concentration from 10 to $200g\;mL^{-1}$, IAA promoted root growth of rice seedlings. These results suggest that bacterial IAA plays a major role in the development of the host plant root system.
Keywords
Pink-pigmented facultative methylotrophic bacteria; Auxins; Indole-3-acetic acid; Rice; Oryza sativa L;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Atzorn, R., A. Crozier, C. T. Wheeler, and G. Sandberg. 1988. Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta 175:532-538   DOI   ScienceOn
2 Chanprame, S., J. J. Todd, and J. M. Widholm. 1996. Prevention of pink pigmented methylotrophic bacteria (Methylobacteirum mesophilicum) contamination of plant tissue cultures. Plant Cell Rep. 16:222-225   DOI   ScienceOn
3 Dunleavy, J. M. 1988. Curtobacterium plantarum sp.nov. is ubiquitous in plant leaves and is seed transmitted in soybean and corn. Int. J. Syst. Bacteriol. 39:240-249
4 Dunleavy, J. M. 1990. Urease production by Methyloabacterium mesophilicum, a seed transmitted bacterium ubiquitous in soybean. Presented at 3rd Biennial Conf. Mol. Cell. Biol. Soybean, July 23-25. Ames, IW, USA
5 Fall, R., and A. A. Benson. 1996. Leaf methanol-the simplest natural product from plants. Trends Plant Sci. 1:296-301   DOI
6 Freyermuth, S. K., R. L. G. Long, and S. Mathur. 1996. Metabolic aspects of plant interaction with commensal methylotrophs. p. 277-284. In M. E. Lidstrom and F. R. Tabita (ed.) Microbial growth on C1 compounds. Kluwer Academic Publishers, The Netherlands
7 Glick, B. R., D. M. Karaturovic, and P. C. Newell. 1995. A novel procedure for rapid isolation of plant growth promoting pseudomonads. Can. J. Microbiol. 41:533-536   DOI   ScienceOn
8 Green, P. N. 1992. The genus Methylobacterium. p. 2342-2349. In: A. Baloes et al. (ed.) The prokaryotes. Springer-Verlag, Berlin, Germany
9 Halda, L., J. Levic, M. Denic, V. Pencic, and C. A. Neyra. 1991. Nitrogen fixing bacteria isolated from maize root and antagonistic activity against Fusarium sp. p. 305-307. In M. Polsinelli et al. (ed.) Proceedings of the fifth international symposium on nitrogen fixation with non-legumes. Kluwer Academic Publishers, Dordrecht, The Netherlands
10 Holland, M. A., and J. C. Polacco. 1992. Urease-null and hydrogenase-null phenotypes of a phylloplane bacterium reveal altered nickel metabolism in two soybean mutants. Plant Physiol. 98:942-948   DOI   ScienceOn
11 Loper, J. E., and M. N. Schroth. 1986. Influence of bacterial source of indole-3-acetic acid on root elongation of sugar beet. Phytopathol. 76:386-389   DOI
12 Madhaiyan, M., M. S. Park, H. S. Lee, C. W. Kim, K. H. Lee, S. Seshadri, and T. M. Sa. 2004a. Phenotypic characterization of methylotrophic N2-fixing bacteria isolated from rice (Oryza sativa L.). Korean J. Soil Sci. Fert. 37:46-53
13 Madhaiyan, M., S. Poonguzhali, K. Hari, S. Seshadri, S. P. Sundaram, H. S. Lee, and T. M. Sa. 2004c. Association of methylotrophic bacteria with sugarcane clone Co86032 (Saccharum officinarum L.) improves plant growth and yield. Biol. Fertil. Soils (communicated)
14 Patten, C. L., and B. R. Glick. 2002. Role of Pseudomonas putida indoleacetic-acid in development of the host plant root system. Appl. Environ. Microbiol. 68:3795-3801   DOI   ScienceOn
15 Patt, T. E., G. C. Cole, J. Bland, and R. S. Hanson. 1974. Isolation of bacteria that grow on methane and organic compounds as sole source of carbon and energy. J. Bacteriol. 120:955-964
16 Hayashi, H., and M. Chino. 1990. Chemical composition of phloem sap from the uppermost internode of the rice plant. Plant Cell Physiol. 31:247-251
17 Bric, J. M., R. M. Bostock, and S. E. Silversone. 1991. Rapid in situ assay for indole acetic acid production by bacteria immobilization on a nitrocellulose membrane. Appl. Environ. Microbiol. 57:535-538
18 Mayak, S., T. Tirosh, and B. R. Glick. 1997. The influence of plant growth promoting rhizobacterium Pseudomonas putida GR12–2 on the rooting of mungbean cuttings. p. 313-315. In A. Ogoshi et al. (ed.) Plant growth-promoting rhizobacteria: present status and future prospects. OECD, Paris, France
19 Nemecek-Marshall, M., R. C. MacDonald, J. J. Franzen, C. L. Wojciechowski, and R. Fall. 1995. Methanol emission from leaves: enzymatic detection of gas-phase methanol and relation of methanol fluxes to stomatal conductance and leaf development. Plant Physiol. 108:1359-1368   DOI
20 Corpe, W. A., and S. Rheem. 1989. Ecology of the methylotrophic bacteria on living leaf surfaces. Microb. Ecol. 62:243–248   DOI   ScienceOn
21 Sawar, M., and R. J. Kremer. 1995. Enhanced suppression of plant growth through production of L-tryptophan-derived compounds by deleterious rhizobacteria. Plant Soil 172:261-269   DOI   ScienceOn
22 Whittenbury, R., S. L. Davies, and J. F. Wilkinson. 1970. Enrichment, isolation and some properties of methane-utilizing bacteria. J. Gen. Microbiol. 61:205-218   DOI
23 Elbeltagy, A., K. Nishioka, H. Suzuki, T. Sato, Y. I. Sato, H. Morisaki, H. Mitsui, and K. Minamisawa. 2000. Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. Soil Sci. Plant Nutr. 46:617-629   DOI
24 Basile, D. V., M. R. Basile, Q. Y. Li, and W. A. Corpe. 1985. Vitamin B12-stimulated growth and development of Jungermannia leiantha Grolle and Gymnocolea inflate. Bryologist 88:77-81   DOI   ScienceOn
25 Counce, P. A., T. C. Keisling, and A. J. Mitchell. 2000. A uniform, objective, and adaptive system for expressing rice development. Crop Sci. 40:436-443   DOI   ScienceOn
26 Patten, C. L., and B. R. Glick. 1996. Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol. 42:207-220   DOI   ScienceOn
27 SAS, Institute Inc. 2001. SAS user's guide, Version 8.2, SAS Institute Inc., Cary, NC, USA
28 Bastian, F., A. Cohen, P. Piccoli, V. Luna, R. Baraldi, and R. Bottini. 1998. Production of indole 3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul. 24:7-11   DOI   ScienceOn
29 Fry, S. C. 1989. Cellulases, hemicellulases and auxin-stimulated growth: a possible relationship. Physiol. Plant. 75:532-536   DOI
30 Barazani, A., and J. Friedman. 1999. Is IAA the major root growth factor secreted from plant-growth-mediating bacteria? J. Chem. Ecol. 25:2397-2406   DOI   ScienceOn
31 Xie, H., J. J. Pasternak, and B. R. Glick. 1996. Isolation and characterization of mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12–2 that overproduce indole acetic acid. Curr. Microbiol. 32:67-71   DOI   ScienceOn
32 Whittenbury, R., and H. Dalton. 1981. The methylotrophic bacteria. p. 894-902. In M. P. Starr et al. (ed.) The Prokaryotes. Springer-Verlag, KG, Berlin, Germany
33 Green, P. N., and I. J. Bousifield. 1982. A taxonomic study of some Gram-negative facultatively methylotrophic bacteria. J. Gen. Microbiol. 128:623-628
34 Kovach, W. L. 1993. MultiVariate Statistics Package (MVSP), version 2.1. Kovach Computing Services, Pentraeth, Wales, UK
35 Omer, Z. S., R. Tombolini, A. Broberg, and B. Gerhardson, 2004. Indole-3-acetic acid production by pink-pigmented facultative methylotrophic bacteria. Plant Growth Regulation (article in press)
36 Madhaiyan, M., S. Poonguzhali, M. Senthilkumar, S. Seshadri, H. Y. Chung, J. C. Yang, S. P. Sundaram, and T M. Sa. 2004b. Growth promotion and induction of systemic resistance in rice cultivar Co-47 (Oryza sativa L.) by Methylobacterium spp. Bot. Bull. Acad. Sin. (accepted)
37 Corpe, W. A., and D. V. Basile.1982. Methanol- utilizing bacteria associated with green plants. Dev. Indust. Microbiol. 23:483-493
38 Brandl, M. T., and S. E. Lindow. 1998. Contribution of indole-3-acetic acid production to the epiphytic fitness of Erwinia herbicola. Appl. Environ. Microbiol. 64:3256-3263
39 Patt, T. E., G. C. Cole, and R. S. Hanson. 1976. Methylobacterium, a new genus of facultatively methylotrophic bacteria. Int. J. Syst. Bacteriol. 26:226-229   DOI
40 Lifshitz, R., J. W. Kloepper, M. Kozlowski, C. Simonson, J. Carlson, E. M. Tipping, and I. Zaleska. 1987. Growth promotion of canola (rapeseed) seedlings by a strain of Pseudomonas putida under gnotobiotic conditions. Can. J. Microbiol. 33:390-395   DOI
41 Rechcigl, M. 1978. CRC Handbook series in nutrition and food, Section G: Diets, Culture media, food supplements, Volume III Culture media for microorganisms and plants. CRC Press, Boca, Raton, FL, USA
42 Hirano, S. S., and C. D. Upper. 1992. Bacterial community dynamics. p. 271-294. In J. H. Andrews and S. S. Hirano (ed.) Microbial ecology of leaves. Springer-Verlag, New York, NY, USA
43 Rovira, A. D. 1965. Plant root exudates and their influence upon soil microorganism. p. 170-186. In K. F. Baker and W. C. Snyder (ed.) Ecology of soil-borne plant pathogens-prelude to biological control. John Murray, London, UK
44 Heumann, W. 1962. Die methodic der kreuzung sternbillsener bacteria. Biol. Zenatrabl. 81:341-354
45 Ivanova, E. G., N. V. Doronina, and Y. A. Trotsenko. 2001. Aerobic methylobacteria are capable of synthesizing auxins. J. Microbiol. 70:392-397   DOI   ScienceOn
46 Salmeron V., M. V. Martinez-Toledo, and J. Gonzalez-Lopez. 1990. Nitrogen fixation and production of auxins gibberellins and cytokinins by an Azotobacter chroococcum strain isolated from the root of Zea mays in the presence of insoluble phosphate. Chemosphere 20:417-422   DOI   ScienceOn
47 Beyerler, M., P. Michaux, C. Keel, and D. Haas. 1997. Effect of enhanced production of indole-3-acetic acid by the biological control agent Pseudomonas fluorescens CHA0 on plant growth. p. 310-312. In A. Ogoshi et al. (ed.) Plant growth promoting rhizobacteria: present status and future prospects. OECD, Paris, France
48 Holt, J. G., N. R. Kreig, P. H. A. Sneath, J. T. Staley, and S. T. Williams. 1994. Bergey's manual of determinative bacteriology. Williams and Wilkins, Baltimore, MD, USA
49 Kato-Noguchi, H., J. Mizutani, and K. Haeseoawa. 1994. Allelopathy of oats II Allelochemical effect of L-tryptophan and its concentration in oat root exudates. J. Chem. Ecol. 20:315-319   DOI   ScienceOn
50 Lambrecht, M., Y. Okon, A. V. Broek, and J. Vanderleyden. 2000. Indole-3-acetic acid: a reciprocal signaling molecule in bacteria-plant interactions. Trends Microbiol. 8:298-300   DOI   ScienceOn
51 Oppong, D., V. M. King, X. Zhou, and J.A. Bowen. 2000. Cultural and biochemical diversity of pink-pigmented bacteria isolated from paper mill slimes. J. Ind. Microbiol. Biotechnol. 25:74-80   DOI   ScienceOn
52 Barbieri, P., and E. Galli. 1993. Effect on wheat root development of inoculation with an Azospirillum brasilense mutant with altered indole-3-acetic acid production. Res. Microbiol. 144:69-75   DOI   ScienceOn
53 Koenig R. L., R. O. Morris, and J. C. Polacco. 2002. tRNA is the source of low-level trans-Zeatin production in Methylobacterium spp. j. Bacteriol. 184:1832-1842   DOI   ScienceOn
54 Basile, D. V., L. L. Slade, and W. A. Corpe. 1969. An association between a bacterium and a liverwort, Scapania nemorosa. Bulletin of the Torrey Botanical Club. 96:6711-6714
55 Caron, M., C. L. Patten, S. Ghosh, and B. R. Glick. 1995. Effects of the plant growth promoting rhizobacterium Pseudomonas putida GR12–2 on the physiology of canola roots. Plant Growth Regul. Soc. Am. Q. 23:297-302
56 Anthony, C. 1991. Assimilation of carbon in methylotrophs. p. 79-109. In I. Goldberg and J. S. Rokem (ed.) Biology of methylotrophs. Butterworth–Heinemann, Stoneham, MA, USA
57 Holland, M. A. 1997. Occams razor applied to hormonology. Are cytokinins produced by plants? Plant Physiol. 115:865-868   DOI
58 Meharg, A. A., and K. Killham. 1995. Loss of exudates from the roots of perennial ryegrass inoculated with a range of micro-organisms. Plant Soil 170:345-349   DOI   ScienceOn
59 Hanson, R. S. 1992. Methane and methanol utilizers. p. 1-22. In J. C. Murrell and H. Dalton (ed.). Methane and methanol oxidizers. Plenum Press, New York, NY, USA
60 Lidstrom, M. E. 1991. The aerobic methylotrophic bacteria. p. 431-445. In A. Balows et al. (ed.) The Prokaryotes. Springer-Verlag, New York, NY, USA
61 Dijkhuizen, L., P. R. Levering, and G. E. de Vries. 1992. The physiology and biochemistry of aerobic methanol-utilizing Gram-negative and Gram-positive bacteria. p. 149-181. In J. C. Murrell and H. Dalton (ed.) Methane and methanol oxidizers. Plenum Press, New York, NY, USA
62 Bartel, B. 1997. Auxin biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:49-64
63 Cervantes-Martinez, J., S. Lopez-Diaz, and B. Rodriguez-Garay. 2004. Detection of the effects of Methylobacterium in Agave tequilana Weber var. azul by laser-induced fluorescence. Plant Sci. 166:889-892   DOI   ScienceOn