DOI QR코드

DOI QR Code

Optimization of Indole-3-Acetic production by phosphate solubilization bacteria isolated from waste mushroom bed of Agaricus bisporus

  • Walpola, Buddhi Charana (Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Noh, Jae-Geun (Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Kim, Chan Kyem (Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Kyung, Ki-Cheon (Taean Lily Experiment Station, Chungcheongnam-do Agricultural Research and Extention Services) ;
  • Kong, Won-Sik (Mushroom Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Yoon, Min-Ho (Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University)
  • Received : 2013.06.05
  • Accepted : 2013.06.18
  • Published : 2013.06.30

Abstract

A total of 35 phosphate solubilizing bacterial strains were isolated from waste mushroom bed of Agaricus bisporus in Buyeo-Gun, Chungnam and screened for the production of indole acetic acid (IAA). The best IAA producing strain was identified as Pantoea rodasii using 16S rRNA analysis. In addition to the IAA production, this strain could act as an efficient phosphate solubilizer (1100 ${\mu}g$ $ml^{-1}$ after 5 days of incubation) also. The selected strain was cultured under different conditions in order to assess the optimum conditions for maximum IAA production. The nutrient broth (NB) medium was recorded as the best medium, where the maximum IAA production (229 ${\mu}g$ $ml^{-1}$) was recorded at the start of stationary phase (12 hours after inoculation) of the bacteria growth. The performance of the strain was found to be maximum at the temperature of $30^{\circ}C$ followed by $25^{\circ}C$. IAA production was found to be increased with increasing tryptophan concentration (from 0.1 to 0.6%), however beyond this limit, a slight reduction in IAA production was observed. The strains' ability to produce IAA was further confirmed by extraction of crude IAA and subsequent TLC analysis. A specific spot from the extracted IAA preparation was found corresponding with the standard spot of IAA with same $R_f$ value. The results of HPLC analysis conducted in identifying and quantifying the IAA production more precisely, are in agreement with the results of the assessment done with colorimetric method. As revealed by the results of the pot experiment, the isolated strain could significantly enhance the growth (as measured by shoot and root growth) of mung bean plants compared to that of non-inoculated plants. Therefore it can be concluded that the present strain, Pantoea rodasii has great potential to be used as bio-inoculants.

Keywords

References

  1. Ahmad, F., Ahmad, I. and Khan, M.S. 2005. Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turk. J. Biol. 29 : 29-34.
  2. Ahmad, F., Ahmad, I. and Khan, M.S. 2008. Screening of free living rhizobacteria for their multiple plant growth promoting activities. Microbiol. Res. 163 : 173-181. https://doi.org/10.1016/j.micres.2006.04.001
  3. Bianco, C. and Defez, R. 2009. Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid over producing Sinorhizobium meliloti strain. J. Exp. Bot. 6 : 3097-3107.
  4. Chaiharn, M. and Lumyong, S. 2011. Screening and optimization of Indole-3-Acetic production and phosphate solubilization from rhizobacteria aimed at improving plant growth. Curr. Microbiol. 62 : 173-181.
  5. Chaiharn, M. and Lumyong, S. 2009. Phosphate solubilization potential and stress tolerance of rhizobacteria from rice soil in Nothern Thailand. World J. Microbiol. Biotechnol. 25 : 305-314.
  6. Chanway, C. P. 2002. Plant growth promotion by Bacillus and relatives. p. 219-235. In: Berkeley R., M. Heyndrickx, N. Logan, P. De Vos (ed.) Bacillus subtilis for biocontrol in variety of plants. Blackwell Publishing, Boston, MA.
  7. Chung, K. R., Shilts, T., Erturk, U. Timmer, L.W. and Ueng, P.P. 2003. Indole derivatives produced by the fungus Colletotrichum acutatum causing lime anthracnose and postbloom fruit drop of citrus. FEMS Microbiol. Lett. 226 : 23-30. https://doi.org/10.1016/S0378-1097(03)00605-0
  8. Compant, S., Clement, C. and Sessitsch, A. 2010. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 42 : 669-678. https://doi.org/10.1016/j.soilbio.2009.11.024
  9. Dastager, S. G, Deepa, C. K., Puneet, S. C., Nautiyal, C. S. and Pandey, A. 2009. Isolation and characterization of plant growth-promoting strain Pantoea NII-186 from Western Ghat Forest soil, India. Lett. Appl. Microbiol. 49 : 20-25. https://doi.org/10.1111/j.1472-765X.2009.02616.x
  10. Datta, C. and Basu, P. S. 2000. Indole Acetic Acid production by a Rhizobium species from root nodules of leguminous shrub, Cajanus cajan. Microbial. Res. 155 : 123-127. https://doi.org/10.1016/S0944-5013(00)80047-6
  11. Ehmann, A. 1977. The van Urk Salkowski reagent - a sensitive and specific chromogenic reagent for silica gel thin layer chromatographic detection and identification of indole derivatives. J. Chromatogr. 132 : 267-276. https://doi.org/10.1016/S0021-9673(00)89300-0
  12. Ghosh, S. and Basu, P. S. 2006. Production of metabolism of indole acetic acid in root nodules of Phaseolus mungo. Microbiol. Res. 161 : 362-366. https://doi.org/10.1016/j.micres.2006.01.001
  13. Gulati, A., Vyas, P., Rahi, P. and Kasana, R .C. 2009. Plant growth promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas. Curr. Microbiol. 58 : 371-377. https://doi.org/10.1007/s00284-008-9339-x
  14. Gutierrez, C. K., Matsui, G. Y., Lincoln, D. E. and Lovell. C. R. 2009. Production of the phytohormone indole-3- acetic acid by the estuarine species of the genus Vibrio. Appl. Environ. Microbiol. 75 : 2253-2258. https://doi.org/10.1128/AEM.02072-08
  15. Hansan, H.A.H. 2002. Gibberellin and auxin production by plant root fungi and their biosynthesis under salinitycalcium interactions. Rostlinna Vyroba. 48 : 101-106.
  16. Hunter, W.J. 1989. Indole-3-acetic acid production by bacteroids from soybean root nodules. Physiol. Plant. 76 : 31-36.
  17. Jung, Y. P., Kyung, K. C., Jang, K. Y. and Yoon, M. H. 2011. Isolation and characterization of plant growth promoting rhizobacteria from waste mushroom bed from Agaricus bisporus. Korean J. Soil Sci. Fert. 44 : 866-871. https://doi.org/10.7745/KJSSF.2011.44.5.866
  18. Kang, S. C., Ha, C. G., Lee, T. G. and Maheswari, D. K.. 2002. Solubilization of insoluble inorganic phosphates by a soil-inhabiting fungus Fomitopsis sp. PS 102. Curr. Sci. 82 : 439-442.
  19. Kapoor, R., Ruchi, Kumar, A., Patil, S., Pratush, A. and Kaur1, M. 2012. Indole Acetic Acid production by fluorescent Pseudomonas isolated from the rhizospheric soils of Malus and Pyrus. Recent Res. Sci. Technol. 4 : 06-09.
  20. Kim, I. G., Lee, M. H., Jung, S. Y., Song, J. J., Oh, T. K. and Yoon, J. H. 2005. Exiguobacterium aestuari sp nov. and Exiguobacterium marinum sp nov., isolated from a tidal flat of the yellow sea in Korea. Int. J. syst. Evol. Microbiol. 55 : 885-889. https://doi.org/10.1099/ijs.0.63308-0
  21. Kumar, P.R. and Ram, M.R. 2012. Production of indole acetic acid by Rhizobium isolates from Vigna trilobata (L) Verdc. African J. Microbiol. Res. 27 : 5536-5541.
  22. Kumar, S., Tamura, K., Jakobsen, I.B. and Nei, M. 2001. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics. 17 : 1244-1245. https://doi.org/10.1093/bioinformatics/17.12.1244
  23. Lipping, Y., Jiatao, X., Daohong, J., Yanping, F., Guoqing, L. and Fangcan, L. 2008. Antifungal substances produced by Penicillium oxalicum strain PY-1-potential antibiotics against plant pathogenic fungi. World J. Microbiol. Biotechnol. 24 : 909-915. https://doi.org/10.1007/s11274-007-9626-x
  24. Malboobi, M. A., Owlia, P., Behbahani, M., Sarokhani, E., Moradi, S., Yakhchali, B., Deljou, A. and Heravi, K. M. 2009. Solubilization of organic and inorganic phosphates by three highly efficient soil bacterial isolates. World J. Microbiol. Biotechnol. 25 : 1471-1477. https://doi.org/10.1007/s11274-009-0037-z
  25. Mandal, S. M., Mondal, K. C., Dey, S. and Pati, B. R. 2007. Optimization of cultural and nutritional conditions for Indole-3-Acetic Acid (IAA) production by a Rhizobium sp. isolated from root nodules of Vigna mungo (L.)Hepper. Res. J. Microbiol. 2 : 239-246. https://doi.org/10.3923/jm.2007.239.246
  26. Manulis, S. and Barash, I. 2003. Pantoea agglomerans pvs gypsophilae and betae, recently evolved pathogens? Mol. Plant Pathol. 4 : 307-314. https://doi.org/10.1046/j.1364-3703.2003.00178.x
  27. Mehdipour Moghaddam, M. J., Emtiazi, G. and Salehi, Z. 2012. Enhanced auxin production by Azospirillum pure cultures from plant root exudates. J. Agr. Sci. Tech. 14 : 985-994.
  28. Mirza, M. S., Ahmad, W., Latif, F., Haurat, J., Bally, R., Normand, P., and Malik, K. A. 2001. Isolation, partial characterization, and the effect of plant growth promoting bacteria (PGPB) on micro-propagated sugarcane in vitro. Plant Soil. 237 : 47-54. https://doi.org/10.1023/A:1013388619231
  29. Mittal, V., Singh, O., Nayyar, H., Kaur, J. and Tewari, R. 2008. Stimulatory effect of phosphate solubilizing fungal strains (Aspergillus awamori and Penicillium citrinum) on the yield of chickpea (Cicer arietinum L. cv. GPF2). Soil Biol. Biochem. 40 : 718-727. https://doi.org/10.1016/j.soilbio.2007.10.008
  30. Nautiyal, C. S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170 : 265-270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x
  31. Patil, N. B., Gajbhiye, M., Ahiwale, S. S., Gunjal, A. B. and Kapadnis, B. P. 2011. Optimization of Indole-3-acetic acid (IAA) production by Acetobacter diazotrophicus L1 isolated from Sugarcane. Int. J. Environ. Sci. 2 : 295-302.
  32. Patten, C. L. and Glick, B. R. 1996. Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol. 42 : 207-220.
  33. Patten, C. L. and Glick, B. R. 2002. Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68 : 3795-3801. https://doi.org/10.1128/AEM.68.8.3795-3801.2002
  34. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4 : 406-425.
  35. SAS. 1999. SAS/STAT User's Guide Version 8. SAS, Cary, NC.
  36. Sergeeva, E., Hirkala, D.L.M. and Nelson, L.M. 2007. Production of indole-3-acetic acid, aromatic amino acid aminotransferase activities and plant growth promotion by Pantoea agglomerans rhizosphere isolates. Plant Soil 297 : 1-13. https://doi.org/10.1007/s11104-007-9314-5
  37. Sergeeva, E., Liaimer, A., and Bergman. B. 2002. Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta. 215 : 229-238. https://doi.org/10.1007/s00425-002-0749-x
  38. Shahab, S., Ahmed, N. and Khan. N. S. 2009. Indole acetic acid production and enhanced plant growth promotion by indigenous PSBs. Afr. J. Agric. Res. 11 : 1312-1316.
  39. Sudha, M., Gowri, S. R., Prabhavathi, P., Astapriya, P., Devi, Y. S. and Saranya, A. 2012. Production and optimization of Indole Acetic by indigenous micro flora using agro waste as substrate. Pakistan J. Biol. Sci. 15 : 39-43.
  40. Swain, M. R., Naskar, S. K. and Ray, R. C. 2007. Indole-3-acetic acid production and effect on sprouting of yam (Dioscorea rotundata L.) minisetts by Bacillus subtilis isolated from culturable cow dung microflora. Pol. J. Microbiol. 56 : 103-110.
  41. Thompson, J. D., Gibson, T .J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. 1997. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25 : 4876-4882. https://doi.org/10.1093/nar/25.24.4876
  42. Unyayar, S., Unyayar, A. and Unal, E. 2000. Production of auxin and abicisic acid by Phanerochaete chrysosporium ME446 immobilized on polyurethane foam. Turk. J Biol. 24 : 769-774.
  43. Varsha-Narsian, J., Thakkar, J. and Patel, H. H. 1994. Inorganic phosphate solubilization by some yeast. Indian J. Microbiol. 35 : 113-118.
  44. Vessey, J. K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil. 255 : 571-586. https://doi.org/10.1023/A:1026037216893
  45. Wani, P. A., Khan, M. S. and Zaidi, A. 2007. Co-inoculation of nitrogen fixing and phosphate solubilizing bacteria to promote growth, yield and nutrient uptake in chickpea. Acta. Agron. Hung. 55 : 315-323. https://doi.org/10.1556/AAgr.55.2007.3.7

Cited by

  1. Indole-3-acetic acid production by newly isolated red yeast Rhodosporidium paludigenum vol.61, pp.1, 2015, https://doi.org/10.2323/jgam.61.1
  2. Fed-batch fermentation of indole-3-acetic acid production in stirred tank fermenter by red yeast Rhodosporidium paludigenum vol.21, pp.3, 2016, https://doi.org/10.1007/s12257-015-0819-0
  3. Indole-3-acetic acid in plant–microbe interactions vol.106, pp.1, 2014, https://doi.org/10.1007/s10482-013-0095-y
  4. Promotion of phenolic compounds production in Salvia miltiorrhiza hairy roots by six strains of rhizosphere bacteria 2018, https://doi.org/10.1002/elsc.201700077