Indole Acetic Acid Production of Rice Paddy Soils

논토양의 Indole Acetic Acid 생성능

  • Suh, Jang-Sun (Division of Applied Microbiology, National Institute of Agricultural Science and Technology, RDA) ;
  • Noh, Hyung-Jun (Division of Applied Microbiology, National Institute of Agricultural Science and Technology, RDA) ;
  • Choi, Soo-Im (Division of Applied Microbiology, National Institute of Agricultural Science and Technology, RDA)
  • Received : 2006.09.22
  • Accepted : 2006.11.03
  • Published : 2006.12.30

Abstract

This study was conducted to evaluate the indole acetic acid (IAA) formation in soils as a biological indicator for the health of rice paddy soils with control, nitrogen sole, chemical fertilizer (NPK), and chemical fertilizer plus compost (CNPK) plots. There was a positive relationship between colorimetric method and high performance liquid chromatography for IAA in soils determined, and the values were similar between two methods, as $0.83{\sim}1.23{\mu}g\;IAA\;g^{-1}h^{-1}$ in colorimetric method, $0.80{\sim}1.29{\mu}g\;IAA\;g^{-1}h^{-1}$ in HPLC method. Numbers of dehydrogenase-producing bacteria and the IAA production in soils were high in NPK and CNPK plots comparing with control and nitrogen sole plots. Also there was high correlation between numbers of dehydrogenase-producing bacteria and IAA production in soils.

본 연구는 생물학적 토양건전성평가 지표로서의 토양의 탈수소효소 생성균 밀도와 IAA생성능의 적용 가능성을 살펴보고자, 무시용구, 질소 단용구, 3요소 시용구 및 퇴비 3요소 시용구로 처리된 논토양에서의 탈수소효소 생성균 및 토양의 IAA 생성능의 변화에 대해 조사하였다. 비색법과 HPLC법 간의 IAA분석치는 유의성 있는 정의 상관관계가 있었으며, 시험토양의 IAA생성량은 비색법 $0.83{\sim}1.23{\mu}g\;IAA\;g^{-1}h^{-1}$, HPLC법 $0.80{\sim}1.29{\mu}g\;IAA\;g^{-1}h^{-1}$로 분석법 간에 거의 비슷한 수준을 보였다. 탈수소효소생성 토양세균과 토양의 IAA생성능은 대조구와 N 단용구에 비해 NPK구 및 CNPK구에서 유의적으로 높은 결과를 보였으며, 탈수소효소 생성세균과 토양의 IAA 생성능 간에는 유의성이 높은 정의 상관관계를 보였다.

Keywords

References

  1. Bacilio-Jimenez, M., A. Aguilar-Flores, E. Ventura-Zapata, E. Perez-Campos. S. Bouquelet, and E. Zenteno. 2003. Chemical characterization of root exudates from rice(Oryza sativa L.) and their effects on the chemotactic response of endophytic bacteria. Plant & Soil. 249:271-277 https://doi.org/10.1023/A:1022888900465
  2. Benitez E., R. Nogales, M. Campos, and F. Ruano. 2006. Biochemical variability of olive-orchard soils under different management systems. Applied Soil Ecology. 32:221-231 https://doi.org/10.1016/j.apsoil.2005.06.002
  3. Camina F., C. Trasar-Cepeda, F. Gil-Sotres, and C. Leiros. 1998. Measurement of dehydrogenase activity in acid soils rich in organic matter. Soil Biol. Biochem. 30:1005-1011 https://doi.org/10.1016/S0038-0717(98)00010-8
  4. Chandramohan, D., and A. Mahadevan. 1968. Indole acetic acid metabolism in soils. Curr. Sci. 37:112-113
  5. De Leij F.A.A.M., J.M. Whipps, and J.M. Lynch. 1993. The use of colony development for the characterization of bacterial communities in soil and on roots. Microb. Ecol. 27:81-97
  6. Omer Z.S., R. tombolini, A. Broberg, and B. Gerhardson. 2004. Indole-3-acetic acid production by pink-pigmented facultative methylotrophic bacteria. Plant growth Regulation. 43:93-96 https://doi.org/10.1023/B:GROW.0000038360.09079.ad
  7. Pandya S., P. Lyer, V. Gaitonde, T. Parekh, A. Desai. 1999. Chemotaxis of rhizobium sp. S2 towards Cajanus cajan root exudate and its major components. current microbiology. 38:205-209 https://doi.org/10.1007/PL00006788
  8. Pankhurst C.E., B.M. Doube., V.V.S.R. Gupta. 1997. Biological indicators of soil health. p 5-7. CAB international. New York. USA
  9. Papendick, R.I., J.F Parr. 1992. Soil quality - the key to a sustainable agriculture. Am. J. Alter. Agric. 7:2-3
  10. Praveen-Kumar, and J.C. Tarafdar. 2003. 2,3,5-Triphenyltetrazolium chloride (TTC) as electron acceptor of culturable soil bacteria, fungi and actinomycetes. Biol Fertil. Soils. 38:186-189 https://doi.org/10.1007/s00374-003-0600-y
  11. Purushothaman, D., T. Marimuthu, C.V. Venkataramanan, and R. Kesavan R. 1974. Role of actinomycetes in the biosynthesis of indole acetic acid in soil. Curr. Sci. 43:413-414
  12. Ross D.J. 1971. Some factors influencing the estimation of dehydrogenase activities of some soils under pasture. Soil Biol. Biochem. 3:97-110 https://doi.org/10.1016/0038-0717(71)90002-2
  13. Saviozzi A., P. Bufalino, R. Levi-Minzi, and R. Riffaldi. 2002. Biochemical activities in a degraded soil restored by two amendments: a laboratory study. Biol. Fertil. Soils. 35:96-101 https://doi.org/10.1007/s00374-002-0445-9
  14. Sarwar, M., M. Arshad, D.A. Martens, and W.T. Frankenberger Jr. 1992. Tryptophan-dependent biosynthesis of auxins in soil. Plant and Soil 147:207-215 https://doi.org/10.1007/BF00029072
  15. Strzelczyk, E. and A. Pokojska-Burdzeij. 1984. Production of auxins and gibberellin-like substances by mycorrhizal fungi, bacteria and actinomycetes isolated from soil and the mycorrhizosphere of pine(Pinus silvestris L.). Plant and Soil 81:185-194 https://doi.org/10.1007/BF02197150
  16. Tsavkelova E.A., T.A. Cherdyntseva, and A.I. Netrusov. 2005. Auxin production by bacteria associated with orchid roots. Microbiology. 74:46-53 https://doi.org/10.1007/s11021-005-0027-6
  17. Vivas A., J.M. Barea, B. Biro, and R. Azcon. 2005. Interactive effect of Brevibacillus brevis and Glomus mosseae, both isolated from Cd contaminated soil, on plant growth, physiological mycorrhizal fungal characteristics and soil enzymatic activities in Cd polluted soil. Environmental pollution. 134:257-266 https://doi.org/10.1016/j.envpol.2004.07.029
  18. Vivas, A., J.M. Barea, B. Biro, and R. Azcon. 2006. Effectiveness of autochthonous bacterium and mycorrhizal fungus on Trifolium growth, symbiotic development and soil enzymatic activities in Zn contaminated soil. J. Appl. Microbiol. 100:587-598 https://doi.org/10.1111/j.1365-2672.2005.02804.x
  19. Wohler, L. 1997. Auxin-indole derivates in soils determined by a colorimetric method and by high performance liquid chromatography. Microbiol. Res. 152, 399-405 https://doi.org/10.1016/S0944-5013(97)80058-4