Browse > Article
http://dx.doi.org/10.4014/jmb.1408.08047

Expression of Auxin Response Genes SlIAA1 and SlIAA9 in Solanum lycopersicum During Interaction with Acinetobacter guillouiae SW5  

Kwon, Hyeok-Do (Department of Biological Sciences, Kangwon National University)
Song, Hong-Gyu (Department of Biological Sciences, Kangwon National University)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.6, 2015 , pp. 903-909 More about this Journal
Abstract
Indole-3-acetic acid (IAA) production is a typical mechanism of plant growth promotion by some rhizobacteria. However, a functional genomic study is necessary to unravel the function and mechanism of IAA signaling during rhizobacteria-plant interactions. In this study, the expression of SlIAA1 and SlIAA9 among the auxin response genes in tomato was examined during the interaction between IAA-producing Acinetobacter guillouiae SW5 and tomato plants. When 3-day grown tomato seedlings were treated for 30 min with 10~100 µM of IAA produced by bacteria from tryptophan, the relative mRNA levels of SlIAA1 and SlIAA9 increased significantly compared with those of the control, demonstrating that IAA produced by this bacterium can induce the expressions of both genes. Inoculation of live A. guillouiae SW5 to tomato seedlings also increased the expressions of SlIAA1 and SlIAA9, with more mRNA produced at higher bacterial density. In contrast, treatment of tomato seedlings with dead A. guillouiae SW5 did not significantly affect the expression of SlIAA1and SlIAA9. When 3-day bacterial culture in tomato root exudates was administered to tomato seedlings, the relative mRNA level of SlIAA1 increased. This result indicated that the plant may take up IAA produced by bacteria in plant root exudates, which may increase the expression of the auxin response genes, with resulting promotion of plant growth.
Keywords
Acinetobacter guillouiae; auxin response genes; indole-3-acetic acid; tomato root exudate; tryptophan;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Wu J, Peng Z, Liu S, He Y, Cheng L, Kong F, et al. 2012. Genome-wide analysis of Aux/IAAgene family in Solanaceae species using tomato as a model. Mol. Genet. Genomics 287: 295-311.   DOI   ScienceOn
2 Yamagami M, Haga K, Napier RM, Iino M. 2004. Two distinct signaling pathways participate in auxin-induced swelling of pea epidermal protoplasts. Plant Physiol. 134: 735-747.   DOI   ScienceOn
3 Nebenführ A, White TJ, Lomax TL. 2000. The diageotropica mutation alters auxin induction of a subset of the Aux/IAAgene family in tomato. Plant Mol. Biol. 44: 73-84.   DOI   ScienceOn
4 Prinsen E, Costacurta A, Michiels K, Vanderleyden J, Van Onckelen H. 1993. Azospirillum brasilense indole-3-acetic acid biosynthesis: evidence for a non-tryptophan dependent pathway. Mol. Plant Microbe Interact. 6: 609-615.   DOI   ScienceOn
5 Spaepen S, Vanderleyden J, Remans R. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31: 425-448.   DOI   ScienceOn
6 Reed JW. 2001. Roles and activities of Aux/IAA proteins in Arabidopsis. Trends Plant Sci. 6: 420-425.   DOI   ScienceOn
7 Sacchi N, Chomczynski P. 2006. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenolchloroform extraction: twenty-something years on. Nat. Protoc. 1: 581-585.   DOI   ScienceOn
8 Shinkle JR, Briggs WR. 1984. Auxin concentration/growth relationship for Avena coleoptile sections from seedlings grown in complete darkness. Plant Physiol. 74: 335-339.   DOI   ScienceOn
9 Spaepen S, Vanderleyden J. 2011. Auxin and plant-microbe interactions. Cold Spring Harb. Perspect. Biol. 3: a001438.   DOI
10 Thilmony R, Underwood W, He SY. 2006. Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7. Plant J. 46: 34-53.   DOI   ScienceOn
11 Van Baarlen P, Siezen RJ. 2009. Genomics of plant-associated microbes. Microb. Biotechnol. 2: 406-411.   DOI   ScienceOn
12 Woodward AW, Bartel B. 2005. A receptor for auxin. Plant Cell 17: 2425-2429.   DOI   ScienceOn
13 Gray EJ, Smith DL. 2005. Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol. Biochem. 37: 395-412.   DOI   ScienceOn
14 Hoshino T, Miyamoto K, Ueda J. 2006. Requirement for the gravity-controlled transport of auxin for a negative gravitropic response of epicotyls in the early growth stage of etiolated pea seedlings. Plant Cell Physiol. 47: 1496-1508.   DOI   ScienceOn
15 Kim W-J, Song H-G. 2012. Interactions between biosynthetic pathway and productivity of IAA in some rhizobacteria. Kor. J. Microbiol. 48: 1-7.   DOI   ScienceOn
16 Kravchenko LV, Shapozhnikov AI, Makarova NM, Azarova TS, L’vova KA, Kostyuk II, et al. 2011. Exometabolites of bread wheat and tomato affecting the plant-microbe interactions in the rhizosphere. Russ. J. Plant Physiol. 58: 936-940.   DOI
17 Kamilova F, Kravchenko LV, Shapshnikov AI, Azarova T, Makarova N, Lugtenberg B. 2006. Organic acids, sugars, and L -tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol. Plant Microbe Interact. 19: 250-256.   DOI   ScienceOn
18 Karadeniz A, Topcuoglu SF, Inan S. 2006. Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World J. Microbiol. Biotechnol. 22: 1061–1064.   DOI
19 Kwon H-D, Song H-G. 2014. Interactions between indole-3-acetic acid producing Acinetobacter sp. SW5 and growth of tomato plant. Kor. J. Microbiol. 50: 302-307.   DOI   ScienceOn
20 Last RL, Bissinger PH, Mahoney DJ, Radwanski ER, Fink GR. 1991. Tryptophan mutants in Arabidopsis: the consequences of duplicated tryptophan synthase β genes. Plant Cell 3: 345-358.
21 Mano Y, Nemoto K. 2012. The pathway of auxin biosynthesis in plants. J. Exp. Bot. 63: 2853-2872.   DOI   ScienceOn
22 Chen Z, Kloek A, Cuzick A, Moeder W, Tang D, Innes R, et al. 2004. The Pseudomonas syringae type effector AvrRpt2 functions downstream or independently of SA to promote virulence on Arabidopsis thaliana. Plant J. 37: 494-504.   DOI   ScienceOn
23 Abel S, Nguyen MD, Theologis A. 1995. The PS-IAA4/5-like family of early auxin-inducible mRNA in Arabidopsis thaliana. J. Mol. Biol. 251: 533-549.   DOI   ScienceOn
24 Dharmasiri N, Dharmasiri S, Estelle M. 2005. The F-box protein TIR1 is an auxin receptor. Nature 435: 441-445.   DOI   ScienceOn
25 Audran-Delalande C, Bassa C, Mila I, Regad F, Zouine M, Bouzayen M. 2012. Genome-wide identification, functional analysis and expression profiling of the Aux/IAAgene family in tomato. Plant Cell Physiol. 53: 659-672.   DOI   ScienceOn
26 Chapman EJ, Estelle M. 2009. Mechanism of auxin-regulated gene expression in plants. Annu. Rev. Genet. 43: 265-285.   DOI   ScienceOn
27 Choudhary D, Johri B. 2009. Interactions of Bacillus spp. and plants – with special reference to indu ced systemic resistance (ISR). Microbiol. Res. 164: 493-513.   DOI   ScienceOn
28 Dodd IC, Zinovkina NY, Safronova VI, Belimov AA. 2010. Rhizobacterial mediation of plant hormone status. Annu. Appl. Biol. 157: 361-379.   DOI   ScienceOn