• Title/Summary/Keyword: IAA-producing Bacteria

Search Result 21, Processing Time 0.03 seconds

Isolation of Indole-3-acetic acid (IAA) producing Arthrobacter sp. and plant growth promotion effect (Indole-3-acetic acid (IAA) 생성 Arthrobacter sp.의 분리 및 식물 생육촉진 효과)

  • Da Som Kim;Ho-Young Shin;Song-Ih Han
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.831-838
    • /
    • 2022
  • An auxin-producing bacteria, KSD16, KSD33, and KSD36 were isolated from agricultural soil. The strain KSD16, KSD33, and KSD36 was classified as a strain of Arthrobacter sp. based on phylogenetic analysis of 16S rRNA gene. The isolated KDS16, KDS33, and KSD36 was confirmed to produce indole-3-acetic acid (IAA), which is one of the auxin hormones. When the concentration of IAA was assessed the maximum concentration of IAA, 206.62 mg L-1, was detected from the culture broth incubated in R2A medium containing 0.1% L-tryptophan for 48 h at 28 ℃. To study the effect of IAA producing bacteria on germination rate, seeds of Mung bean were prepared for each treatment. KSD16, KSD33, and KSD36 showed significant increase in root length and number of adventitious roots than the controls. To investigate the growth-promoting effects on the crops, Arthrobacter species were placed in water cultures and seed pots of mung beans. In consequence, the seed germination of mung beans was 73.4% higher than the control.

Indole Acetic Acid Production of Rice Paddy Soils (논토양의 Indole Acetic Acid 생성능)

  • Suh, Jang-Sun;Noh, Hyung-Jun;Choi, Soo-Im
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.386-391
    • /
    • 2006
  • This study was conducted to evaluate the indole acetic acid (IAA) formation in soils as a biological indicator for the health of rice paddy soils with control, nitrogen sole, chemical fertilizer (NPK), and chemical fertilizer plus compost (CNPK) plots. There was a positive relationship between colorimetric method and high performance liquid chromatography for IAA in soils determined, and the values were similar between two methods, as $0.83{\sim}1.23{\mu}g\;IAA\;g^{-1}h^{-1}$ in colorimetric method, $0.80{\sim}1.29{\mu}g\;IAA\;g^{-1}h^{-1}$ in HPLC method. Numbers of dehydrogenase-producing bacteria and the IAA production in soils were high in NPK and CNPK plots comparing with control and nitrogen sole plots. Also there was high correlation between numbers of dehydrogenase-producing bacteria and IAA production in soils.

Expression of Auxin Response Genes SlIAA1 and SlIAA9 in Solanum lycopersicum During Interaction with Acinetobacter guillouiae SW5

  • Kwon, Hyeok-Do;Song, Hong-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.903-909
    • /
    • 2015
  • Indole-3-acetic acid (IAA) production is a typical mechanism of plant growth promotion by some rhizobacteria. However, a functional genomic study is necessary to unravel the function and mechanism of IAA signaling during rhizobacteria-plant interactions. In this study, the expression of SlIAA1 and SlIAA9 among the auxin response genes in tomato was examined during the interaction between IAA-producing Acinetobacter guillouiae SW5 and tomato plants. When 3-day grown tomato seedlings were treated for 30 min with 10~100 µM of IAA produced by bacteria from tryptophan, the relative mRNA levels of SlIAA1 and SlIAA9 increased significantly compared with those of the control, demonstrating that IAA produced by this bacterium can induce the expressions of both genes. Inoculation of live A. guillouiae SW5 to tomato seedlings also increased the expressions of SlIAA1 and SlIAA9, with more mRNA produced at higher bacterial density. In contrast, treatment of tomato seedlings with dead A. guillouiae SW5 did not significantly affect the expression of SlIAA1and SlIAA9. When 3-day bacterial culture in tomato root exudates was administered to tomato seedlings, the relative mRNA level of SlIAA1 increased. This result indicated that the plant may take up IAA produced by bacteria in plant root exudates, which may increase the expression of the auxin response genes, with resulting promotion of plant growth.

Suppression of Morningglory (Ipomoea Hederacea) Growth by Rhizobacteria and IAA-3-ACETIC Acid

  • Kim, Su-Jung
    • Korean Journal of Organic Agriculture
    • /
    • v.14 no.4
    • /
    • pp.411-420
    • /
    • 2006
  • Indole-3-acetic acid (IAA) biosynthesis by bacteria occurs widely in rhizospheres. Bacterial species able to synthesize IAAmay be exploited for beneficial interactions in crop management systems. The objective of this study was to determine the response of ivyleaf morningglory (Ipomoea hederacea) seedlings to IAA and to an IAA-producing rhizobacterum, Bradyrhizobium japonicum isolate GD3. IAA solution and isolate GD3 suppression of seedling growth measured as radicle length and biomass depended on IAA concentration. Seedling radicle length was significantly reduced by ca. 29% with more than $1.0{\mu}M$ of IAA solution, compared to the control, 48 h after application. The cell concentration at 50% growth reduction ($GR_{50}$) of the seedling radicle was IAA production by isolate GD3 at $10^{4.82}\;cfu$, the cell concentration for 50% growth reduction ($GR_{50}$) of seedling radicle was 0.24 iM, which was much lower than the IAA solution concentration ($117.48{\mu}M$) required for $GR_{50}$. Therefore, excess IAA production by isolate GD3 may be more detrimental to morningglory radicle growth than standard IAA solution. Results confirmed involvement of IAA in suppressive effects of isolate GD3 on morning-glory seedlings grown in a hydroponic system.

  • PDF

Rhizobacterial Populations of Glyphosate-Resistant Soybean (Glycine Max) as Affected by Glyphosate and Foliar Amendment

  • Kim, Su-Jung
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.3
    • /
    • pp.262-267
    • /
    • 2006
  • Increased application of glyphosate (Gly) in glyphosate-resistant (GR) soybean cropping systems may affect rhizospheric microorganisms including IAA-producing rhizobacteria (IPR) and their effect on the growth of soybean. This field experiment was conducted to assess IPR populations in the rhizosphere of GR soybean ('Roundup-Ready' DeKalb DKB38-52) treated with glyphosate and foliar amendment treatments such as $PT21^{(R)}$ (urea solution with N 21 %) and $Grozyme^{(R)}$ (Biostimulant: mixtures of micro nutrients and enzymes). Effects of herbicide, sampling date, and their interaction on total bacterial numbers were significant (P < 0.001, 0.001, 0.013, respectively). Total bacteria (TB) numbers were increased with glyphosate treatment at 20 d after application and highest TB populations were associated with $Grozyme^{(R)}$ application, possibly due to the additional substrate from this product. The IPR of the soybean rhizosphere was significantly affected by herbicide, sampling date, and the herbicide*foliar amendment interaction. The ratios of numbers of IPR to TB ranged from 0.79 to 0.99 across the sampling dates irrespective of treatments. IPR numbers were slightly hindered by glyphosate application regardless of foliar amendment.

Isolation and Characterization of Plant Growth Promoting Rhizobacteria From Button Mushroom Compost

  • Oh, Sung-Hoon;Lee, Chang-Jung;Yoon, Min-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.1
    • /
    • pp.100-108
    • /
    • 2016
  • An auxin-producing bacteria (strain 5-1) was isolated from button mushroom compost in Boryeong-Si, Chungcheongnam-Do. The 5-1 strain was classified as a novel strain of Enterobacter aerogenes based on chemotaxonomic and phylogenetic analyses. The isolated E. aerogenes 5-1 was confirmed to produce indole-3-acetic acid (IAA), one of the auxin hormones, using TLC and HPLC analyses. When the concentration of IAA was assessed by performing HPLC quantitative analysis, a maximum concentration of IAA of $109.9mgL^{-1}$ was detected in the culture broth incubated in R2A medium containing 0.1% L-tryptophan for 24 h at $35^{\circ}C$. Acidification of the culture was deemed caused by an increase of IAA because a negative relationship between IAA production and pH was observed. Supplementation with a known precursor of IAA production, L-tryptophan, appeared to induce maximal production at 0.1% concentration, but it reduced production at concentrations above 0.2%. To investigate the growth-promoting effects to crops, the culture broth of E. aerogenes 5-1 was used to inoculate water cultures and seed pots of mung bean and lettuce. In consequence, adventitious root induction and root growth of mung bean and lettuce were two times higher than those of the control.

Isolation and Characterization of the IAA Producing Methylotrophic Bacteria from Phyllosphere of Rice Cultivars(Oryza sativa L.) (벼(Oryza sativa L.)의 잎 면으로부터의 IAA를 생성하는 Methylotrophic Bacteria의 분리 선별 및 특성 비교)

  • Lee, Kyu-Hoi;Munusamy , Madhaiyan;Kim, Chung-Woo;Lee, Hyoung-Seok;Selvaraj, Poonguzhali;Sa, TongMin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.235-244
    • /
    • 2004
  • In this study, we compared the levels of methylotrophic bacterial community diversity in the leaf samples of 19 rice cultivars collected from three regions of Korea. Nineteen pink pigmented isolates showing characteristic growth on methanol were obtained. Physiological and biochemical characters of each isolate were examined according to methods described in Bergey's Manual of Systematic Bacteriology. When phylotypes were defined by performing numerical analysis of 37 characteristics, four distinct clusters were formed. The two reference strains, Methylobacterium extorquens AM1 and Methylobacterium fujisawaense KACC10744 were found to group under cluster IV and cluster III respectively. Cluster I diverged on the basis of nitrate reduction and four isolates showed tolerance upto 0.5 M NaCl concentrations. Two strains in cluster I and III were found to possess methane utilizing properties. Most of the isolates in all the four clusters utilized monosaccharides, disaccharide and polyols as carbon source. When the isolates were subjected for indole-3-acetic acid (IAA) analysis in the presence of L-tryptophan, only 8 isolates exhibited IAA production. In addition, the nitrogen source in the medium was found to influence the IAA production. Addition of $(NH_4)_2SO_4$ in the medium led to a 2 to 30 fold increase in the indole synthesis. However, $KNO_3$, $NH_4NO_3$ and $NH_4Cl$ substitution did not significantly stimulate the synthesis of IAA in the growth medium. Result of gnotobiotic root elongation assay significantly increased roots and shoots lengths, and number of lateral roots, which is mediated by IAA production in the culture medium. The rice seedlings primary roots from seeds treated with methylotrophic isolates were on average 27 to 56% longer than the roots from seeds treated with the uninoculated seeds. In addition, application of different high concentrations of authentic IAA ($400g\;mL^{-1}$) to roots of rice seedlings inhibited root growth. However, the IAA concentration from 10 to $200g\;mL^{-1}$, IAA promoted root growth of rice seedlings. These results suggest that bacterial IAA plays a major role in the development of the host plant root system.

Characterization of auxin production plant growth promotion by a bacterium isolated from button mushroom compost

  • Yoo, Ji-Yeong;Lee, Heon-Hak;Han, Chang-Hoon;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.15 no.1
    • /
    • pp.8-13
    • /
    • 2017
  • An auxin-producing bacterial strain, designated 4-3, was isolated from waste button mushroom compost in Boryeong-si, Chungnam. The strain 4-3 was classified as a novel strain of Leucobacter tardus, based on chemotaxonomic and phylogenetic analyses. TLC and HPLC the isolated L. tardus strain 4-3 produced indole-3-acetic acid (IAA), the auxin. Maximum IAA productionof $94.3mg\;L^{-1}$ was detected for bacteria cultured in R2A medium with 0.1% l-tryptophan, incubated for 24 h at $35^{\circ}C$. Negative correlationwas observed between IAA production and pH of the culture medium, indicating that the increase inIAA caused acidification ofthe medium. The effect of supplementation with varying concentrations of l-tryptophan, a known precursor of IAA, was also assessed. production was maximal at 0.1% l, but decreased at lconcentrations above 0.2%. To investigate the plant growth-promoting effects of the bacterium, L. tardus strain 4-3 culture broth was used to inoculate water cultures and seed pots of mung bean. We found thatadventitious root induction and root growth were 2.2-times higher in thethan in the non-inoculated plants.

Optimization of Indole-3-Acetic production by phosphate solubilization bacteria isolated from waste mushroom bed of Agaricus bisporus

  • Walpola, Buddhi Charana;Noh, Jae-Geun;Kim, Chan Kyem;Kyung, Ki-Cheon;Kong, Won-Sik;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.11 no.2
    • /
    • pp.53-62
    • /
    • 2013
  • A total of 35 phosphate solubilizing bacterial strains were isolated from waste mushroom bed of Agaricus bisporus in Buyeo-Gun, Chungnam and screened for the production of indole acetic acid (IAA). The best IAA producing strain was identified as Pantoea rodasii using 16S rRNA analysis. In addition to the IAA production, this strain could act as an efficient phosphate solubilizer (1100 ${\mu}g$ $ml^{-1}$ after 5 days of incubation) also. The selected strain was cultured under different conditions in order to assess the optimum conditions for maximum IAA production. The nutrient broth (NB) medium was recorded as the best medium, where the maximum IAA production (229 ${\mu}g$ $ml^{-1}$) was recorded at the start of stationary phase (12 hours after inoculation) of the bacteria growth. The performance of the strain was found to be maximum at the temperature of $30^{\circ}C$ followed by $25^{\circ}C$. IAA production was found to be increased with increasing tryptophan concentration (from 0.1 to 0.6%), however beyond this limit, a slight reduction in IAA production was observed. The strains' ability to produce IAA was further confirmed by extraction of crude IAA and subsequent TLC analysis. A specific spot from the extracted IAA preparation was found corresponding with the standard spot of IAA with same $R_f$ value. The results of HPLC analysis conducted in identifying and quantifying the IAA production more precisely, are in agreement with the results of the assessment done with colorimetric method. As revealed by the results of the pot experiment, the isolated strain could significantly enhance the growth (as measured by shoot and root growth) of mung bean plants compared to that of non-inoculated plants. Therefore it can be concluded that the present strain, Pantoea rodasii has great potential to be used as bio-inoculants.

Mass Cultivation and Secondary Metabolite Analysis of Rhodobacter capsulatus PS-2 (광합성세균 Rhodobater capsulatus PS-2의 대량배양 최적화 및 대사산물 분석)

  • Bong, Ki Moon;Kim, Jong Min;Yoo, Jae-Hong;Park, In Chul;Lee, Chul Won;Kim, Pyoung Il
    • KSBB Journal
    • /
    • v.31 no.3
    • /
    • pp.158-164
    • /
    • 2016
  • Plant growth promoting (PGP) hormones, which are produced in a small quantity by bacteria, affect in plant growth and development. PGPs play an important role on the crop productivity in agricultural field. In this study, a photosynthetic bacterial strain producing the PGP was isolated from paddy soil. Bacterial isolate was gram negative, rod-shaped and motility positive. From the 16s rRNA gene sequence analysis, the isolate was identified as Rhodobacter capsulatus PS-2. The mass cultivation of R. capsulatus PS-2 was optimized by considering of the carbon, nitrogen and inorganic salt sources. Optimal medium composition was determined as Na-succinate 4.5 g, yeast extract 5 g, $K_2HPO_4$ 1 g, $MgSO_4$ 5 g, per liter. From the result of 500 L fermentation for 2 days using the optimal medium, the viable cells were $8.7{\times}10^9cfu/mL$. R. capsulatus PS-2 strain produced the carotenoid and indole-3-acetic acid (IAA). The carotenoid extraction and quantitative analysis were performed by HCl-assisting method. Total carotenoid contents from R. capsulatus PS-2 culture broth were measured as $7.02{\pm}0.04$ and $6.93{\pm}0.05mg/L$ under photoheterotrophic and chemoheterotrophic conditions, respectively. To measure the productivity of IAA, colorimetric method was employed using Salkowski reagent at optical density 535 nm. The results showed that the highest content of IAA was $197.44{\pm}5.92mg/L$ in the optimal medium supplemented with 0.3% tryptophan.