• Title/Summary/Keyword: I/O module

Search Result 151, Processing Time 0.026 seconds

A technique to expand the I/O of the PLC Using remote I/O module

  • Suesut, Taweepol;Kongratana, Viriya;Tipsuvannaporn, Vittaya;Kulphanich, Suphan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.61-64
    • /
    • 1999
  • In this paper, a technique to expand the Input and Output (I/O) of the programmable logic controller (PLC) using remote I/O module is presented. The controller and the remote I/O module should have the same protocol and are interfaced through RS 485. Each remote I/O module consists of 16 digital input and 16 digital output, and the maximum of 32 remote I/O module can be linked to one controller. The remote I/O is programmed for interrupt request to controller independently. Therefore, there is no affect to the scan time of the controller. Using this technique, the PLC can be efficiently applied to the several hundred meters different control points such as the ON-OFF control fur the agriculture farm, the building automation system, a multi group of machine control.

  • PDF

The Design and Fabrication of SRAM Modules Surface Mounted on Multilayer Borads (다층 기판 위에 표면실장된 SRAM 모듈 설계 제작)

  • Kim, Chang-Yeon;Jee, Yong
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.3
    • /
    • pp.89-99
    • /
    • 1995
  • In this paper, we ecamined the effect that MCM-L technique influencess on the design and fabrication of multichip memory modules in increasing the packing desity of memory capacity and maximizing its electrical characteristics. For that purpose, we examined the effective methods of reducing the area of module layout and the wiring length with the variation of chip allocation and the number of wiring layers. We fabricated a 256K${\times}$8bit SRAM module with eight 32K${\times}$8bit SRAM chips. The routing experiment showed that we could optimize the area of module layout and wiring length by placing chips in a row, arranging module I/O pads parallel to chip I/O pads, and equalizing the number of terminal sides of module I/O's to that of chip I/O's. The routing was optimized when we used three wire layers in case of one sided chip mounting or five wire layers in case of double sided chip mounting. The fabricated modules showed 18.9 cm/cm$^{2}$ in wiring density, 65 % in substrate occupancy efficiency, and module substrate and functionally tested to find out the module working perfectly.

  • PDF

Hardware design of Intelligent Traffic Controller (지능형 도로교통 제어기의 하드웨어 설계)

  • Seo, Jae-Kwan;Lee, Sung-Ui;Oh, Sung-Nam;Park, Kyi-Tae;Kim, Kab-Il
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.353-356
    • /
    • 2002
  • 본 논문에서는 지능형 도로교통 제어기에 대하여 논한다. 제어기는 Main CPU module, Field I/O module, Display module, communication module, Mother board module로 구성되었다. 각 모듈은 하드웨어의 특성에 따라 분리되어 설계되었고, mother board를 통하여 module 간 데이터를 교환한다 Main CPU module은 입력된 교통 데이터의 처리, Field I/O module은 외부로의 데이터 입출력, Display module은 제어기와 사용자와의 인터페이스, communication module은 제어기의 debugging을 담당한다. 본 논문에서는 하드웨어를 Module화함으로써 필요한 하드웨어의 장/탈착이 용이하고, 제어기를 범용으로 사용할 수 있는 장점이 있다.

  • PDF

The Design of DRAM Memory Modules in the Fabrication by the MCM-L Technique (DRAM 메모리 모듈 제작에서 MCM-L 구조에 의한 설계)

  • Jee, Yong;Park, Tae-Byung
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.5
    • /
    • pp.737-748
    • /
    • 1995
  • In this paper, we studyed the variables in the design of multichip memory modules with 4M$\times$1bit DRAM chips to construct high capacity and high speed memory modules. The configuration of the module was 8 bit, 16 bit, and 32 bit DRAM modules with employing 0.6 W, 70 nsec 4M$\times$1 bit DRAM chips. We optimized routing area and wiring density by performing the routing experiment with the variables of the chip allocation, module I/O terminal, the number of wiring, and the number of mounting side of the chips. The multichip module was designed to be able to accept MCM-L techiques and low cost PCB materials. The module routing experiment showed that it was an efficient way to align chip I/O terminals and module I/O terminals in parallel when mounting bare chips, and in perpendicular when mounting packaged chips, to set module I/O terminals in two sides, to use double sided substrates, and to allocate chips in a row. The efficient number of wiring layer was 4 layers when designing single sided bare chip mounting modules and 6 layers when constructing double sided bare chip mounting modules whereas the number of wiring layer was 3 layers when using single sided packaged chip mounting substrates and 5 layers when constructing double sided packaged chip mounting substrates. The most efficient configuration was to mount bare chips on doubled substrates and also to increase the number of mounting chips. The fabrication of memory multichip module showed that the modules with bare chips can be reduced to a half in volume and one third in weight comparing to the module with packaged chips. The signal propagation delay time on module substrate was reduced to 0.5-1 nsec.

  • PDF

Development of Embedded Board for Construction of Smart Factory (스마트 팩토리 구축을 위한 임베디드 보드 개발)

  • Lee, Yong-Min;Lee, Won-Bog;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.1092-1095
    • /
    • 2019
  • In this paper, we propose the development of an embedded board for construction of smart factory. The proposed embedded board for construction of smart factory consists of main module, ADC module, I/O module. Main module is a main calculating device which includes communication pard that allows interface with external device with using industrial protocol and is ported operating system makes board operating into. ADC module takes part in transferring digital signal has converted from electrical signal to the main module from the external sensor which is installed on the field. I/O module is an input and output module which transfers to the main module about a status, alarm, command signal of field device and it has a function that blocks external noises from field device with isolation circuit into it. In order to evaluate the performance of the proposed embedded board for construction of smart factory, it has been tested by an authorized testing institute. As a result, quantity of interacting protocol was 5, speed of hardware clock synchronization was under 10us and operating time of battery without source power was over 8 hours. It produced the same result as the world's highest level.

A Study on the Method of Energy Saving in a Marine Cooling System (선박 냉각시스템의 에너지 절감기법에 관한 연구)

  • Oh Jin-Seok;Lim Myoung-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.587-592
    • /
    • 2005
  • The ESS(Energy Saving System) is designed to have functions of controlling. monitoring for cooling system. etc. ESS consists of the I/O module, CPU module and Display module I/O module detects various ESS data on local area and treats signals via I/O interface system. The interface system receives various status data and outputs control signals. ESS is tested with dummy signal to verify proposed functions and is shown good results. For future study ESS will be tested under real condition in the ship.

Design and Implementation of Large Capacity Cable Checking System using an I/O Buffer Method (입.출력 버퍼방식을 이용한 대용량 케이블 점검 시스템 설계 및 구현)

  • 양종원
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.103-115
    • /
    • 2002
  • This paper describes the results on the design and implementation of large capacity cable checking system using I/O buffer method. The I/O buffer module which has feedback loops with input and output buffers is designed with logic gate in the VME board and controlled by MPC860 microprocessor. So this system can check a lot of cable at the same time with less size and less processing time than that of relay matrix method with the A/D converter. The size of the I/O buffer module can be variable according to the number of cable. And any type of cable can be checked even if the pin assignment of cable is changed.

Development of compact wireless communication module for auto-recognition wearable I/O device by using USB interface

  • Park, Kwanghyun;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.37.5-37
    • /
    • 2002
  • $\textbullet$ Wearable I/O Devices relieve the restriction of working space to the worker. $\textbullet$ And They permit very active work achievement to the worker. $\textbullet$ But, current Wearable I/O Devices still have some controversial points. $\textbullet$ The worker needs serie system operations to wear and take off devices. $\textbullet$ Also, it is not easy to change any device which is currently used when the worker uses some devices. $\textbullet$ So, we propose the Compact Wireless Communication Module to solve these problem. $\textbullet$ For that purpose, we implemented the proposed module, and proved the efficiency and convenience.

  • PDF

Analysis of Flood Control Capacity of Agricultural Reservoir Based on SSP Climate Change Scenario (SSP 기후변화 시나리오에 따른 농업용 저수지 홍수조절능력 분석)

  • Kim, Jihye;Kwak, Jihye;Hwang, Soonho;Jun, Sang Min;Lee, Sunghack;Lee, Jae Nam;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.5
    • /
    • pp.49-62
    • /
    • 2021
  • The objective of this study was to evaluate the flood control capacity of the agricultural reservoir based on state-of-the-art climate change scenario - SSP (Shared Socioeconomic Pathways). 18 agricultural reservoirs were selected as the study sites, and future rainfall data based on SSP scenario provided by CMIP6 (Coupled Model Intercomparison Project 6) was applied to analyze the impact of climate change. The frequency analysis module, the rainfall-runoff module, the reservoir operation module, and their linkage system were built and applied to simulate probable rainfall, maximum inflow, maximum outflow, and maximum water level of the reservoirs. And the maximum values were compared with the design values, such as design flood of reservoirs, design flood of direct downstream, and top of dam elevation, respectively. According to whether or not the maximum values exceed each design value, cases were divided into eight categories; I-O-H, I-O, I-H, I, O-H, O, H, X. Probable rainfall (200-yr frequency, 12-h duration) for observed data (1973~2020) was a maximum of 445.2 mm and increased to 619.1~1,359.7 mm in the future (2011~2100). For the present, 61.1% of the reservoirs corresponded to I-O, which means the reservoirs have sufficient capacity to discharge large inflow; however, there is a risk of overflowing downstream due to excessive outflow. For the future, six reservoirs (Idong, Baekgok, Yedang, Tapjung, Naju, Jangsung) were changed from I-O to I-O-H, which means inflow increases beyond the discharge capacity due to climate change, and there is a risk of collapse due to dam overflow.

Communication Redundancy for Reliability Improvement in an Industrial Monitoring and Control System

  • Rhyu, Keel-Soo;Chung, Kyung-Yul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.8
    • /
    • pp.1291-1298
    • /
    • 2004
  • In development of monitoring and control systems, one of the most important points is to consider a redundancy so that the system can be operated normally although hardware faults are partly occurred. The purpose of this paper is to introduce a monitoring and control system with a redundancy function for I/O servers and communication networks. I/O servers composed with an active server and a standby server. Each server also has 3 communication ports, 2 ports of them were connected to field units and the other 1 port was connected to the other server. Field units have to be constructed to 2 communication ports connected I/O servers through communication lines. Also, server communication module was implemented for analyzing and handling fault elements. and was submodularized for linking easily with a monitoring and control module. An experiment with 2 servers and 2 field units was constructed to demonstrate its effectiveness.