• Title/Summary/Keyword: Hypergeometric series

Search Result 151, Processing Time 0.023 seconds

CERTAIN SUMMATION FORMULAS DUE TO RAMANUJAN AND THEIR GENERALIZATIONS

  • RATHIE ARJUN K.;MALANI SHALOO;MATHUR RACHANA;CHOI JUNESANG
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.469-475
    • /
    • 2005
  • The authors aim at deriving four generalized summation formulas, which, upon specializing their parameters, give many summation identities including, especially, the four very interesting summation formulas due to Ramanujan. The results are derived with the help of generalized Dixon's theorem obtained earlier by Lavoie, Grondin, Rathie, and Arora.

QUANTUM MODULARITY OF MOCK THETA FUNCTIONS OF ORDER 2

  • Kang, Soon-Yi
    • Korean Journal of Mathematics
    • /
    • v.25 no.1
    • /
    • pp.87-97
    • /
    • 2017
  • In [9], we computed shadows of the second order mock theta functions and showed that they are essentially same with the shadow of a mock theta function related to the Mathieu moonshine phenomenon. In this paper, we further survey the second order mock theta functions on their quantum modularity and their behavior in the lower half plane.

A Note on Certain Properties of Mock Theta Functions of Order Eight

  • Srivastava, Pankaj;Wahidi, Anwar Jahan
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.2
    • /
    • pp.249-262
    • /
    • 2014
  • In this paper, we have developed a non-homogeneous q-difference equation of first order for the generalized Mock theta function of order eight and besides these established limiting case of Mock theta functions of order eight. We have also established identities for Partial Mock theta function and Mock theta function of order eight and provided a number of cases of the identities.

CLASS-MAPPING PROPERTIES OF THE HOHLOV OPERATOR

  • Mishra, Akshaya K.;Panigrahi, Trailokya
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.51-65
    • /
    • 2011
  • In the present paper sufficient conditions, in terms of hyper-geometric inequalities, are found so that the Hohlov operator preserves a certain subclass of close-to-convex functions (denoted by $R^{\tau}$ (A, B)) and transforms the classes consisting of k-uniformly convex functions, k-starlike functions and univalent starlike functions into $\cal{R}^{\tau}$ (A, B).

A NOTE ON MORLEY'S FORMULA

  • Cho, Young-Joon;Park, In-Hyok;Seo, Tae-Young;Choi, June-Sang
    • East Asian mathematical journal
    • /
    • v.15 no.2
    • /
    • pp.201-210
    • /
    • 1999
  • Morley provided an interesting identity about 20 years earlier before its more generalized form was given by Dixon. In this note some of its generalized forms and an application of Morley's formula are considered.

  • PDF

A SUMMATION FORMULA OF 6F5(1)

  • Choi, June-Sang;Arjun K.;Shaloo Malani
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.4
    • /
    • pp.775-778
    • /
    • 2004
  • The authors aim at obtaining an interesting result for a special summation formula for $_{6F_5}$(1), by comparing two generalized Watson's theorems on the sum of a $_{3F_2}$ obtained earlier by Mitra and Lavoie et. al.

BOUNDEDNESS OF 𝓒b,c OPERATORS ON BLOCH SPACES

  • Nath, Pankaj Kumar;Naik, Sunanda
    • Korean Journal of Mathematics
    • /
    • v.30 no.3
    • /
    • pp.467-474
    • /
    • 2022
  • In this article, we consider the integral operator 𝓒b,c, which is defined as follows: $${\mathcal{C}}^{b,c}(f)(z)={\displaystyle\smashmargin{2}{\int\nolimits_{0}}^z}{\frac{f(w)*F(1,1;c;w)}{w(1-w)^{b+1-c}}}dw,$$ where * denotes the Hadamard/ convolution product of power series, F(a, b; c; z) is the classical hypergeometric function with b, c > 0, b + 1 > c and f(0) = 0. We investigate the boundedness of the 𝓒b,c operators on Bloch spaces.