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A SUMMATION FORMULA OF ¢Fs(1)

JUNESANG CHoI, ARJUN K. RATHIE, AND SHALOO MALANI

ABSTRACT. The authors aim at obtaining an interesting result for
a special summation formula for ¢ F5(1), by comparing two gener-
alized Watson’s theorems on the sum of a 3F» obtained earlier by
Mitra and Lavoie et.al.

The aim of this note is, by comparing special cases of two known sum-
mation formulas for 3F»(1) with the aid of another known summation
formula for 5Fy, to derive the following interesting summation formula
for 6F 5(1):
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where, for convenience,
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In 1943, Mitra [3] generalized the classical Watson’s theorem on the
sum of a 3F5(1) [1, p. 16]:
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in the following form:
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where, for convenience,
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The special case § = 2¢ of (3) yields the Watson’s theorem (1).
In 1992, by using a different method from that of Mitra in [3], Lavoie,
Grondin and Rathie [2] have obtained twenty five summation formulas

closely related to the classical Watson’s theorem:
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shall be used here.
On the other hand, the special case § = 2¢ — 2 of (3) is written as
follows:

a, b, c
3F2(%(a+b+1), 2c —2 \ 1

_ 22T (o fbr
)

I(3) T(e—4a+3) T (c—3b+3)
(5) F C—%, %C‘*‘%, <, 1’ %’ %CL, %b y 1
e - ;e ce—lc—gatg,c—3b+3
L1 Dle+3)T(zats) I (zb+3)
¢c—1T(3)T(c-la+1)T(c-1b+1)
C+%, %C‘*‘%a 2, %a+%’ %b+%
sFa 1 2% 00 1509 —1b+1]1 ’
26T T cm3aT L =5

provided R(2¢ —a —b) > 3.

If we apply the known summation formula for the 5Fy due to Bailey
[1, p. 27] to the right-hand side of (5), comparing its resulting identity
and (4), after a little simplification, we arrive at the desired result (1).
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