A SUMMATION FORMULA OF $_6F_5(1)$

JUNESANG CHOI, ARJUN K. RATHIE, AND SHALOO MALANI

ABSTRACT. The authors aim at obtaining an interesting result for a special summation formula for $_6F_5(1)$, by comparing two generalized Watson's theorems on the sum of a $_3F_2$ obtained earlier by Mitra and Lavoie et.al.

The aim of this note is, by comparing special cases of two known summation formulas for ${}_{3}F_{2}(1)$ with the aid of another known summation formula for ${}_{5}F_{4}$, to derive the following interesting summation formula for ${}_{6}F_{5}(1)$:

where, for convenience,

$$\alpha = 2c^2 - (a+b+5)c + (a+1)(b+1) + 2.$$

In 1943, Mitra [3] generalized the classical Watson's theorem on the sum of a $_3F_2(1)$ [1, p. 16]:

$$(2) = \frac{{}_{3}F_{2}\begin{pmatrix} a, & b, & c \\ \frac{1}{2}(a+b+1), & 2c \end{pmatrix} 1}{\Gamma(\frac{1}{2}a+\frac{1}{2})\Gamma(c+\frac{1}{2})\Gamma(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2})\Gamma(c-\frac{1}{2}a-\frac{1}{2}b+\frac{1}{2})}$$

$$= \frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{2}a+\frac{1}{2})\Gamma(\frac{1}{2}b+\frac{1}{2})\Gamma(c-\frac{1}{2}a+\frac{1}{2})\Gamma(c-\frac{1}{2}b+\frac{1}{2})}{(\Re(2c-a-b)>-1)}$$

Received November 7, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 33C65, 33C60, 33C70, 33C05.

Key words and phrases: generalized hypergeometric series ${}_{p}F_{q}$, Watson's summation theorem for ${}_{3}F_{2}$.

in the following form:

$$3F_{2}\left(\begin{array}{c} a, & b, & c \\ \frac{1}{2}(a+b+1), & \delta \end{array} \middle| 1\right) \\
= \frac{2^{a+b-2}\Gamma\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}\right)\Gamma\left(c-\frac{1}{2}a-\frac{1}{2}b+\frac{1}{2}\right)}{\Gamma\left(a\right)\Gamma\left(b\right)} \\
\cdot \left\{ \frac{\Gamma\left(c+\frac{1}{2}\right)\Gamma\left(\frac{1}{2}a\right)\Gamma\left(\frac{1}{2}b\right)}{\Gamma\left(\frac{1}{2}\right)\Gamma\left(c-\frac{1}{2}b+\frac{1}{2}\right)}\mathcal{A}(a, b, c, \delta) \\
+ \frac{2c-\delta}{\delta}\frac{\Gamma\left(c+\frac{3}{2}\right)\Gamma\left(\frac{1}{2}a+\frac{1}{2}\right)\Gamma\left(\frac{1}{2}b+\frac{1}{2}\right)}{\Gamma\left(\frac{3}{2}\right)\Gamma\left(c-\frac{1}{2}a+1\right)\Gamma\left(c-\frac{1}{2}b+1\right)}\mathcal{B}(a, b, c, \delta) \right\} \\
(\Re(2\delta-2c-a-b)>-1),$$

where, for convenience,

$$\mathcal{A}(a, b, c, \delta) \\ := {}_{7}F_{6} \left(\begin{array}{c} c - \frac{1}{2}, \frac{1}{2}c + \frac{3}{4}, c, c - \frac{1}{2}\delta, c - \frac{1}{2}\delta + \frac{1}{2}, \frac{1}{2}a, \frac{1}{2}b \\ \frac{1}{6}c - \frac{1}{4}, \frac{1}{6}, \frac{1}{6}\delta + \frac{1}{6}, \frac{1}{6}\delta, c - \frac{1}{6}a + \frac{1}{6}, c - \frac{1}{6}b + \frac{1}{6} \end{array} \right) 1 \right)$$

and

$$\mathcal{B}(a, b, c, \delta) = \left\{ \begin{array}{c} \mathcal{B}(a, b, c, \delta) \\ :=_7 F_6 \left(\begin{array}{c} c + \frac{1}{2}, \, \frac{1}{2}c + \frac{5}{4}, \, c, \, c - \frac{1}{2}\delta + \frac{1}{2}, \, c - \frac{1}{2}\delta + 1, \, \frac{1}{2}a + \frac{1}{2}, \, \frac{1}{2}b + \frac{1}{2} \\ \frac{1}{2}c + \frac{1}{4}, \, \frac{3}{2}, \, \frac{1}{2}\delta + 1, \, \frac{1}{2}\delta + \frac{1}{2}, \, c - \frac{1}{2}a + 1, \, c - \frac{1}{2}b + 1 \end{array} \right) \,.$$

The special case $\delta = 2c$ of (3) yields the Watson's theorem (1).

In 1992, by using a different method from that of Mitra in [3], Lavoie, Grondin and Rathie [2] have obtained twenty five summation formulas closely related to the classical Watson's theorem:

$$_{3}F_{2}\left(\begin{array}{ccc} a, & b, & c \\ \frac{1}{2}(a+b+i+1), & 2c+j \end{array} \middle| 1 \right) \quad (i, j=0, \pm 1, \pm 2),$$

the case (i, j) = (0, -2) of which is as follows:

$$3F_{2}\begin{pmatrix} a, & b, & c \\ \frac{1}{2}(a+b+1), & 2e-2 & 1 \end{pmatrix} = \frac{2^{a+b-2}\Gamma\left(c-\frac{1}{2}\right)\Gamma\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}\right)\Gamma\left(c-\frac{1}{2}a-\frac{1}{2}b-\frac{3}{2}\right)}{2(c-1)\Gamma\left(\frac{1}{2}\right)\Gamma\left(a\right)\Gamma\left(b\right)} \cdot \left[\frac{\left\{(c-a-1)(c-b-1)+(c-1)(c-2)\right\}\Gamma\left(\frac{1}{2}a\right)\Gamma\left(\frac{1}{2}b\right)}{\Gamma\left(c-\frac{1}{2}a-\frac{1}{2}\right)\Gamma\left(c-\frac{1}{2}b-\frac{1}{2}\right)} + \frac{4\Gamma\left(\frac{1}{2}a+\frac{1}{2}\right)\Gamma\left(\frac{1}{2}b+\frac{1}{2}\right)}{\Gamma\left(c-\frac{1}{2}a-1\right)\Gamma\left(c-\frac{1}{2}b-1\right)} \right] \quad (\Re(2c-a-b) > 3)$$

shall be used here.

On the other hand, the special case $\delta = 2c - 2$ of (3) is written as follows:

$$3F_{2}\begin{pmatrix} a, & b, & c & | & 1 \\ \frac{1}{2}(a+b+1), & 2c-2 & | & 1 \end{pmatrix} \\
&= \frac{2^{a+b-2}\Gamma\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}\right)\Gamma\left(c-\frac{1}{2}a-\frac{1}{2}b+\frac{1}{2}\right)}{\Gamma\left(a\right)\Gamma\left(b\right)} \\
\cdot \left[\frac{\Gamma\left(c+\frac{1}{2}\right)\Gamma\left(\frac{1}{2}a\right)\Gamma\left(\frac{1}{2}b\right)}{\Gamma\left(\frac{1}{2}\right)\Gamma\left(c-\frac{1}{2}a+\frac{1}{2}\right)\Gamma\left(c-\frac{1}{2}b+\frac{1}{2}\right)} \\
\cdot {}_{7}F_{6}\begin{pmatrix} c-\frac{1}{2}, & \frac{1}{2}c+\frac{3}{4}, & c, & 1, & \frac{3}{2}, & \frac{1}{2}a, & \frac{1}{2}b \\ \frac{1}{2}c-\frac{1}{4}, & \frac{1}{2}, & c-\frac{1}{2}, & c-1, & c-\frac{1}{2}a+\frac{1}{2}, & c-\frac{1}{2}b+\frac{1}{2} \end{pmatrix} \\
+ \frac{1}{c-1}\frac{\Gamma\left(c+\frac{3}{2}\right)\Gamma\left(\frac{1}{2}a+\frac{1}{2}\right)\Gamma\left(\frac{1}{2}b+\frac{1}{2}\right)}{\Gamma\left(\frac{3}{2}\right)\Gamma\left(c-\frac{1}{2}a+1\right)\Gamma\left(c-\frac{1}{2}b+1\right)} \\
\cdot {}_{5}F_{4}\begin{pmatrix} c+\frac{1}{2}, & \frac{1}{2}c+\frac{5}{4}, & 2, & \frac{1}{2}a+\frac{1}{2}, & \frac{1}{2}b+\frac{1}{2} \\ \frac{1}{2}c+\frac{1}{4}, & c-\frac{1}{2}, & c-\frac{1}{2}a+1, & c-\frac{1}{2}b+1 \end{pmatrix} \\
\end{pmatrix},$$

provided $\Re(2c-a-b) > 3$.

If we apply the known summation formula for the ${}_{5}F_{4}$ due to Bailey [1, p. 27] to the right-hand side of (5), comparing its resulting identity and (4), after a little simplification, we arrive at the desired result (1).

References

- [1] W. N. Bailey, Generalized Hypergeometric Series, Cambridge University Press, Cambridge, 1935.
- [2] J. L. Lavoie, F. Grondin, and A. K. Rathie, Generalization of Watson's theorem on the sum of a ₃F₂, Indian J. Math. **34** (1992), 23–32.
- [3] S. C. Mitra, J. Indian Math. Soc. 7 (1943), no. 3, 102-110.

Junesang Choi

Department of Mathematics

College of Natural Sciences

Dongguk University

Kyongju 780-714, Korea

E-mail: junesang@mail.dongguk.ac.kr

Arjun K. Rathie and Shaloo Malani Department of Mathematics Dungar College Bikaner-334 001 Rajasthan State, India

E-mail: akrathie@rediffmail.com