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Abstract The object of this note is to provide various methods for proving
two resuits contiguous to Kummer’s second theorem by using the classical
Gauss’s summation theorem and contiguous relations.

1. Introduction and Preliminaries

The generalized hypergeometric function with p-numerator and
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g-denominator parameters is defined by

(1.1)

» a1,...,0p
oFy 2| = pFglan,...,ap; 01,..., B4 2)
By -, By

= (o). (ap)nz"
=2 (ﬂl)n...(ﬂ:)nn!

where (o), denotes the Pochhammer symbol (or the shifted fac-
torial, since (1), = n!) defined by

(¢)o=1 and (a)p=ala+1)---(a+n-1), (n=1,2,---)

for any complex number a.

From the theory of differential equations, Professor Kummer [3]
established the following very interesting and useful results, which
are in the literature, known as the Kummer’s first and second
theorems:

(1.2) e * x1Fi(a; pyx) = 1F1(p ~ a5 p; — )
and

s 1 22
(1.3) e™® x1Fi(a; 2a;2z) = o F1(—;a + 7’ —).

Later on, Professor Bailey [1] established the result (1.3) in the
form
1 z?

(1.4) e %/?% x 1Fi(e; 20;z2) = o1 (—; a + 5 -1—6)

by making use of Gauss’s second summation theorem [2]:
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Very recently Rathie and Choi [9] derived the result (1.3) in
the form '

2
(1.6) e® X 1Fi(—;a+ -;—; % = 1F1(0; 20; 2x)

by using classical Gauss’s summation theorem [2]:

a,b; | T(c)l(c—a-—b)
1) 2F1 [ c; 1} " I(c—a)l(c-b)

provided Re(c —a — b) > 0.

In 1995, Rathie and Nagar [11] established the following two
results contiguous to (1.4):

e %% x 1 Fy(o; 20 + 1; )

(1.8)
1 z2 T 3 2?2
=ofilmet 5itg) " a3 )
and
e %% x 1 Fy(a;2a — 1; 2)
(1.9)
1 z? T 1 z*
= oF1(—;a - 3 Té) + moFl(“,a-f* 7 '1'5)

by employing two summation formulas [4] contiguous to Gauss’s
second summation theorem:
(1.10)

a,b
T
F N
21[%m+b+m 4
()T (3a + §b+1){ 1 _ 1 }
a—b F(3a)T(36+3) T(E(la+d)
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and
a,b
1 1.1 1 1
2 15| =T(G)MGa+ 5b)
_1_(a+b) 2 2 2 2 [T(—;—a+ %)F(%b)
1
1.11) 4 | |
( F(3a)T(36 + %)]

On the other hand, from the theory of differential equations, Pro-
fessor Preece [5] established the following interesting and useful
identity involving square of a generalized hypergeometric series:

2

1
(1.12) {1F1(a;2a;1)}? = € x 1 Fp(o;a + z—)

‘2',20,
Recently, Rathie [7] has given a very short proof of (1.12) and
obtained two results contiguous to (1.12).
Later on, Rathie and Choi [8] derived the following two results
closely related to (1.12) by the same short method developed by
Rathie [7]: ‘

1 2
{1Fi(e; 20 + 1;:1:)}2 = e”{ng(a;a + 5,201; %—)
x 3 x?
- 2a+11Fz(a+1,a+ ~2-,2a+1,7)
x? 3 z?
. — . 2 9.2
(1.13) +4(2a+1)21F2(a+1,a+2,2a+ ; 4)}
and
oz 1 x?
{1iFi(e;2a — 1;z)}* =€ {1Fg(a -1~ -2—,20: - 2; —Z—)
T 1 x?
Fla; —, 20 - 1; —
+2a-~11 g(a,a+2 a—1 4)
z? 1 x?
(1.14) + m1F2(a, o+ “23201, 'Z')}
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The following series identity [6, p. 56], and a result for the

Pochhammer symbol [6, p. 59], and the well known Bailey’s for-
mula [2, p. 245] will also be required in our present investigations:

115) Y Akm =33 Ak k),

n=0 k=0 n=0 k=0
("1)k(a)n :
1.1 nt = —————— (0< k <mn),
(116) @k = gy OSk<n)
and
oF1(—; o) X oF1(—;0; )
1 1 ‘
1.17 ~(p+o),=(p+0~-1);
(1.17) p |2t dglre-n; 1
p,o,p+o—1;
which, for p = o, reduces to
o 1
(1.18) {oFi(= p2)}* = 1F3(p - 5ip,20 — 1;42).

The aim of this note is to prove the results (1.8) and (1.9) by us-
ing (i) classical Gauss's summation theorem (1.6), (ii) contiguous
relations, and (iii) results (1.13) and (1.14) contiguous to Preece’s
identity (1.12).

2. Proofs of (1.8) and (1.9)

First Method : Use of Gauss’s theorem (1.7).
In order to prove the result (1.8), it is easy to see that the result
(1.8) can also be written in the form

z? T 3 :rz)}

1
5 1) " riefimetsiyg

(2.1) =1F(a;2a + 1; 2z).
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Now, let
(2.2)
1 z2 x '3 z? i
z . 0E N . 2. v n
€ {OFI( ya -+ 92’ 4) 2a+10Fl( ya+ 9’ 4)} Zanx .

n=0

Clearly, in the product of left-hand side of (2.2), it is not diffi-
cult to see that the coefficient a,, of 2™, after some simplification,
is obtained as

n l-n
1 ) Y
an = —2F 2 2 1
n! L
at
s, -T 41
2.3) - ! _m| 2 2 2
(2a+1) (n—1)! 3
a+—2-;

In both 2Fj, if we apply Gauss’s summation theorem (1.7),
then, after some simplification, we get

__(a)a2"
(24) Ap = m.

Substituting the values of a, in (2.2) and summing the series,
we arrive at the right-hand side of (2.1). This completes the proof
of (1.8).

In exactly the same manner, the result (1.9) can also be estab-
lished.

Second Method : Use of contiguous relations.
It is just a simple exercise to prove the following contiguous
relation between three | Fy’s.

1Fi(a; 20 + 1 2)

(2.5)
xr

e am——— X 1;2 2;x).
2(2a+1)1 1(a+ o+ :Z?)

=1 Fi(o;205) —
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Multiplying both sides of (2.5), by e~*/2, we get
e /% Fi(e;2a + 1;z)
(2.6)

= e““"/lel(a; 205 ) — ol

22a+1)°

But right-hand side can be evaluated with the help of Kum-
mer’s second theorem (1.4), and at once, we arrive at (1.8).

In exactly the same manner, the result (1.9) can be derived
with the help of the following contiguous relation involving three
1F 1’S :

1F1(C¥; 200 — 1; .’B)
(2.7

'“/21F1(a + 1,20+ 2; 7).

=1F(a-1;2a~-2;z) + 5 1F1(a; 205 z).

(2a - 1)

Third Method : Use of results (1.13) and (1.14) contiguous
to the Preece’s identity (1.12).

We start with the result (1.13), which can be written in the
form

1 2
{e™*/% Fy(a;20+ 1;2)}° = 1 Fa(asa + §,2a; %)
x 3 z
RS Sttt N ey 1.—..‘.
(2a+1)1F2(a+1’a+ g2t Lig)
z? i

3 x
L _F La+2,20+2 2.
+4(2a+1)21 2(a + a+t g2+ 4)

On using the results (1.17) and (1.18) in the right-hand side of
(2.8), we get

(2.8)

1 22 7°
{e™*/?1Fi(052a+ 1;2)} = {oFl(“;OH* 3 ‘1"‘)]

T 1 z? 3 z?
SE— 2Y C = == )oF1(—; e
Garnefimiat gigglhilsat i)

x? 3 z21°

(2:9) T aT 1)y ["F‘( "”’2"1")]
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Thus, we have

10)
{e7*/?1Fi(a; 2a + 1;2)}?

~{F(—-a+1-f—2-)» T R(atr 5]
N2 160 T 2@+ D T T 216

from which the result (1.8) follows immediately.

In exactly the same manner, the result (1. 9) can aiso be estab—

lished with the help of (1.14).
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