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A NOTE ON MORLEY’S FORMULA

YounG JooN CHO, INHYOK PARK,
TAE YOUNG SEO AND JUNESANG CHOI

ABsTRACT Morley provided an interesting identity about 20 years
earlier before its more generalized form was given by Dixorn In this
note some of its generalized forms and an application of Morley’s for-
mula are considered

1. Introduction and preliminaries
In 1902, Morley [10] established an interesting identity:
o0 3 3
. .. ) — r{L—-s
(L.1) H_Z{a(a-i-l) | Ea—i-n 1)} _ cos (%wa) ( 12a) .
n=1 e ' {r(1-1a)}

where I is the well-known Gamma function whose Weilerstrass canon-
ical product form is

e o AN z/n
(12) F(Z) = 7 7};[l'(]. + ;L‘) e/ ,

v being the Euler-Mascherony’s constant defined by

n

1
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If we make use of the Pochhammer symbol (or the shifted factorial)
defined by

(1.4) (a)n = { {;(a“)”'(“*”—l) E:il:): {1,2,3,---})

which, using the fundamental property of the Gamma function I'(z +
1) = zI'(z}, is rewritten in the form:

I'(a +n)
ey 7

and the generalized hypergeometric function notation ,Fy, we write
the left member of (1.1) in the following form

(15) (a)n =

(1.6) a,a,a;
=3Fy it.
L1,
In 1922, Dixon evaluated a more general form of {1.6):
o, B, v;
3k 1]
(1.7) 1+a—-8,14+a—7y,

T1+3)TQ+a-Bll+a-NT(1+ia-8-7)
= P(l+Q)F(1+%a—ﬁ)l‘(]_,;_%a_,y)]j‘(1+a~ﬁ_~7):

which, for @ = 8 =4 = q, yields

(1.8) 3y

a‘jala;l o P(1+%G)F(l—%a)

11, T(1+a)T(1-a){l(1—1a)}
which 1s easily seen to correspond with the right member of (1.1) by
using the following well-known identity:

Tz

(1.9) PA+2T-2) = oo
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In this note we consider some more generalized forms of (1.6} and

show how these kinds of summation formulas can be applied to evaluate
certain infinite series.

Now we introduce the Ps1 (or Digamma) function is defined as the
logarithmic derivative of the Gamma function
I"(z)
T(z)
We give some well-known properties of the ¥ —function (see [7]): For a
positive integer n,

Tl’(l) = =7 ’(,/)(]./2) =—-7- 210g2:

(1.10) ¥(2) =+ logT(z) =

(1.11) , , nloy
/ Py — .
P(z+n) - Y(z) I;] Py
The Polygamma functions are defined by (see [7, p. 41])
dn+1 ~ d™(z)
L12) () { T logl(e) = S (neN)
¥(z) (n=0)
from which it 1s easy to show that
(1.13)
) +1 — {__1yn+1
(M (2) = ) n'z (k +z)n+l =(-1)""nl{(n+1,2) (n€N),
where ({z,a) is the generahzed (or Hurwitz)} zeta function defined by
XD
(114)  ((za) =) (k+a)™ (Re(z)>1;0#0,-1,-2,...)
k=0

and ((z,1) = {(z) is the Riemann zeta function. It is not difficult to
derive the following results (see [15, pp. 265-275]):

1 1 1 1
C(Z):'{T'i:;@k_l)z :22&_14(215) (Re(2) > 1),

(1.15) -
¢(z,a) =C((z,m+a)+ Z(k +a)™* (n € N).

k=0
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2. Generalized forms of (1.6)
Recall the formula {14, p. 251].

a, b, ¢, d, e;
5F4 1
l+a-bl+a—-c,1l+a—-d,1+a—e;

Tl+a-T{l+a—-dIl+a—-el(1+a—-c-d—ce)
1) T(l+al(l+a—d-elf(l+a-c-dT(1+a-c—e)

1-}--1—0,—6, c, d, e;
X 4F3 2 1 ,
1+ -21-(1, ct+d+e—a,l+a—10b;
which is subject to the restriction that one of the parameters 1 %a —b,
¢, d, or ¢ is a negative integer.
Taking the limit as & — oo in (2.1) with the help of the asymptotic
formula

I'z+« 1
(2.2) f‘hﬁ; = 2% P [1+O(—Z->] (z — o0; |argz| < 7),
we obtain
a, ¢ d, e,
4F3 1
l+a-¢c,l4+a—-d l+a—eg;

Tl4ae-oPl+a-dTQ+a—-e)l(l+a~c—d—e)
(23) ~ I'l+al{l+a-d—el'(l+a—c—d)I'(1+a—c—e)

¢, d, e,
X3F2 1 1
1+§a, ct+d+e—a;

If we take the hmit as e — oo in (2.3) with the aid of (2.2) and use
Gauss summation formula

c: | T{c—a)T{c-b)

7

(2. R [a, b; 1}  T()T{c~a—b)
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we obtain Dixon’s formula (1.7).

Exchanging b and e, and then wnting e = 1(1 4 a), we obtain a
transformation formula for 4F3.

a, b, c d;
1F3 1
l+a—bl4+a—-c,l+a—d,

Tl+a-bTl1+a—c)I(l4+a—-dI{(l1+a~b—c—d)

25 TFl+all+a-b—l(l+a-b6—dI(1+a—c—d)

1

5,}),C,d,

X 4F3 P11 L,
1+§a,§+-2-a,b+6+d-a;

which 1s subject to the restriction that one of the parameters b, ¢, or d
is a negative integer

3. Infinite series

Many infinite series have been evaluated in terws of the Psi functions
or the Zeta functions (see [8] and [9]).

Al-Saqabi et al [l] presented a systematic account of several inter-
esting infinite series expressed in terms of the Psi (or Digamma) func-
tions. Aular de Durdn et al. [2] examined rather systematically the
sums of numerous interesting families of infinite series with or without
the use of fractional calculus.

Shen {12] investigated the connections between the Stirling numbers
s(n, k) of the first kind and the Riemann zeta function {(n) by means
of the Gauss summation formula for o Fy. In this line, various classes of
infimte series have been evaluated by making use of known summation
formulas for o /7 and 3F» (see {3], [4], and [5])

In this section we also evaluate certain infinite series by using the
formula (1.8).

For our purpose we mtroduce the Stirling numbers s(n, k) of the
first kind defined by the following equation (see (6, pp. 204-218], [11,
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p. 43], and {13, p. 396, Problem 25]):

n

2(z-1)---(z—n+1) =Zs(n,k}zk.

k=0

From the above definition of s(n, k), the Pochhammer symbai (o1 he
shifted factorial) can be written in the form:

n

(31) (Z)n = z(z + 1) P (z +n— 1) — Z(_l)n-fks(n’ k:}zk

k=0

It is also not difficult to see that

-

(-1)™*s(n,1) = (n—1)%  (=1)"s(n,2) = (n - w{

(3.2) _ -
(n - 1 1 1
(C1)™s(n,3) = (N L {(; E) ;ﬁ}

Replace a by z in (1 8) and set

f(z)::1+2 (%)3

I‘(l+~21«z)I‘(l—§2~z)

7«

-1

= :F(1+z)r(1—z){r(1--;-z)}2
= ZO‘“ 2"
n=0
From (3.1),

(B) (2)n = 3 Arz",
k=0
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where

A = (—=1)"*E5(n, k).

We therefore have

(C) f(z)=1+Z(agz3+a’4z4-}-a5z5+...)7
n=1
where
_ AT 1
gz = (rnl)3 = ns,
3A% A, g [l
”=mw_5(zz’
k=1
2
34, (A1 A3 + A43) 3 n—1y n=i g
=T o | k) TXE|

Applying the logarithmic derivative to (A) leads immediately to

CR IR (S

—z,/;(1+z)+t,’;(1—z)+w(1—%z).

(D)

The application of (1.13) to (D) yields

12 ™ .
(E) o= e

n=0

where ¢y = (} and

(-1 -2

n+l
(F) en= —‘“W—+(—l)"—1+ (g) }C(n#—l) (n € N).



208 Y J. CHO,I H PARK, T. Y. SEO AND J CHOI

From (A) and (E), we have

oo

F(z) =3 (n+ Vanp 2"

n=0

-5 s0= (S (£ )
.S (z an_,cck)

n=0 \k=0

which, upon equating the coefficients of 2z, yields

(G) (n+ani1 = E an-k ¢k (n€N).
k=0

Note also that

- o fO 1O _

Now, using (F) to (H), we obtain a; = 0, and

(I a3 = (), o= 3¢(e), a5 =350(9),.-

Finally, from (C) and (I), we have

oo

33) S5(51) -5
n=1

which was evaluated in an elementary way by using the formula (1.6)
(see Morley [10, p. 402, Eq.(6)]);

(3.4) i%[ (Z ) S%}‘C@

n=1 k=1
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Or, equivalently, (3.4) 1s rewritten in the form

n

o0 2 n o0 n
1 1 1 1 1
2o Pl g) 1w =l m (k) KO
=]

n=1 k=1 k=1 n=1
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