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A NOTE ON MORLEY'S FORMULA

Young Joon Cho, Inhyok Park, 
Tae Young Seo and Junesang Choi

Abstract Morley provided an interesting identity about 20 years 
earlier before its more generalized form was given by Dixon In this 
note some of its generalized forms and an application of Morley's for
mula are considered

1. Introduction and preliminaries

In 1902, Morley [1이 establi아led an interesting identity: 

喧쁘*g壯 yw*,n!

where V is the well-known Gamma function whose Weierstrass canon
ical product form is

(1.2) 昨)=三亡(1 + ：)七心，

n—1 *

7 being the Euler-Mascheronfs constant defined by

(1.3) 7 = lim (g?—log n) 으 0.577 215 664 901532 •
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If we make use of the Pochhammer symbol (or the shifted factorial) 
defined by

J a(a + l)---(a + n- 1) (n e N := (1,2,3, •■•})
H (n = 0)

which, using the fundamental property of the Gamma function F(z + 
1) = is rewritten in the form:

r(a + n)
(1.5) (a)n-Fq)，

and the generalized hypergeometric function notation pFq, we write 
the left member of (1.1) m the following form

1 +支严브느料N二邛 — 竟

n=l I 丿 7i=l
a, a, a;

(1.6)
n\

=3F2
1, 1 ；

3

In 1922, Dixon evaluated a more general form of (1.6):

「 a,7；"
3形 1

(17) [_l + aj — /?, 1 + a： — 7,_
r (1 + *q) r(1 + q —伊)「(1 + a — t)「(i + — ”y)

_ rplTa)「(1 + 如一月)]? (i+ 一 丁) r (1 + a — 一 丁)' 

which, for a = /3 — ^ = a. yields

(1.8) 3形 [a, a, a; i] = —亶브ihlHkJ少__

L 1,1； 一I r(i + a)r(i-a)(r(i-ia))2

which is easily seen to correspond with the right member of (LI) by 
using the following well-known identity:

IT 7
(i-9) r(i + z)r(i-^)= -—Sm(7TZ)
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In this note we consider some more generalized fo호ms of (1.6) and 
show how these kinds of summation formulas can be applied to evaluate 
certain infinite series.

Now we introduce the Psi (or Digamma) function is defined as the 
logarithmic derivative of the Gamma function- 

(L10) 綽) ：= 土 log r(z) = 으g •
az 丄(z丿

We give some well-known properties of the ^—function (see [7]): For a 
positive integer n,

讽X) = 寸(1/2) = —7 - 2 log 2,

(1.11) n~l 1 
讽 z +끼-") = £由 

fc=0
The Polygamma functions are defined by (see [7, p. 41])

(1.12)
:= / 噩 log「(z)=

[讽z)

fz) 
dzn (neN)

(n = 0)
from which it is easy to show that
(1-13) 8 
必％咯可戸 -(-l)n+1n!C(n + l,z) (n e N),

where is the generalized (or Hurwitz) zeta function defined by
8

(1.14) a) = + cl)~z (Re(z) > 1; a 7^ 0, —1, —2,...)
k=Q

and 1) = <(z) is the Riemann zeta function. It is not difficult to 
derive the following results (see [15, pp. 265-275])*

(1.15)

<(z) = i匸土二M g (次]])z =乒", ；) (Re(z)〉l), 

n —1
<(z, a) = + a) + £：(“ + a)-z (n G N).

k=Q
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2. Generalized forms of (1.6)

Recall the formula [14, p. 251].

5码

X 4曰3

a, b> c)& e;
1

l + — 6, 1 (2 — c, l + <z — d) 1 + q — e;
r(l + q — c)r(l + a — d)r(l + Q — e)r(l + a — c 一 d — e) 

r(z + a) = zl 
M + /3) ~ 1 + 0 (z —> oo; I arg히 < 7F),

(2.4)
M;]

c；

F(c)「(c — a — b) 
r(c — a) r(c — b)

(2.1) r(i + <z)r(l + a —涉一e)r(l + a — c — d)r(l + ft — c — e)
1 '

1 + 50 — c, d, e;
1 * 1，

1 + 了缶 c +(/ + e — a, l+<z — b,

which is subject to the 호estriction that one of the parameters l + |a —6, 
c, d, or e is a negative integer.

Taking the limit as b —> co in (2.1) with the help of the asymptotic
formula

(2.2) 

we obtain

a, c, rf, e, -
4卩3 1

1 + a — c, 1 + a ~ d, 1 + a ~ e ;
r(l + q — c)r(l + d — d)r(l + q — 6)r(l + CL — c 一 d — e)

(2.3) r(l + tz)r(l + a — d~ e)r(l + a - c — c?)r(l + a — c — e) 

~ c,(/, e ;'
x 3F2 I 1

l + c + d + e — a;A -

If we take the limit as e 00 in (2.3) with 나le aid of (2.2) and use 
Gauss summation formula
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we obtain Dixon's formula (1.7).
Exchanging b and e, and then writing e = ^(1 + a), we obtain a 

transformation formula for 〃弓.

a, &, c, d;
4-F3 1

l — b, 1 + q — c, l +(z — d,
r(l ci — b)r(l + cl — c)r(l + CL _ (/)r(l + a _ b 一 c — d)

(2.5) r(l +(i)r(l + a，一 b — c)r(l + a — b —(Z)r(l + a — c — d) 
「 1 -5, b.c.d,

X4玛 1 1 1 1 ,
1 + 5% 5 + 5。，b + c + d — a; 

_ 厶 厶 L _

which is subject to the restriction that one of the parameters 6, c, or d 
is a negative integer

3. Infinite series

Many infinite series have been evaluated in terms of the Psi functions 
or the Zeta functions (see [8] and [9]).

Al-Saqabi et al [1] presented a systematic account of several inter
esting infinite series expressed m terms of the Psi (or Digamma) func
tions. Aular de Duran et al. [2] examined rather systematically the 
sums of numerous interesting families of infinite series with or without 
the use of fractional calculus.

Shen [12] investigated the connections between the Stirling numbers 
s(n, k) of the first kind and the Riemann zeta function〈(竹，)by means 
of the Gauss summation formula for 2-Fi- In this line, various classes of 
infinite series have been evaluated by making use of known summation 
formulas for 2Fi and 3形(see [3], [4], and [5])

In this section we also evaluate certain infinite series by using the 
formula (1.8).

For our purpose we introduce the Stirling numbers s(n, k) of the 
first kind defined by the following equation (see [6, pp. 204-218], [11, 
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p. 4이, and [13, p. 396, Problem 25]):

n
z[z — 1) • • • (z — n + 1) = 5(n, k)zk.

k=Q

From the above definition of s(n, fc), the Pochhammer symbol (<:*i ^he 
shifted factorial) can be written in the form:

n
(3.1) (z)n = z{z + 1) •・•(z + 72 — 1) = y^(-l)n+fcs(n, k}zk

左=0

It is also not difficult to see that

n- 1
(-l)n+1s(n, 1) = (n - 1)!;

(3.2)

(—l)”+%(n,3) =

Replace a by z in (1 8) and set

(A)
「(1 + 拘「(1-汐) 

r(i + 2)r(i - z) (r (i -1^)}2

oo
=:)dn zn. 

n=0

From (3.1),

n
(B) (Z)n = E&/,
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where
Ak = (-l)n+ks(n,k).

We therefore have

(C) /(z) = 1 + £ (a3z3 + a4z4 + a5z5 H-----),
n=l

where

Al 1
% =即=冨，

_ 3盅厶2 _ 3 (頌1A
「广戒河，

「 2
_X4i(4i& +电—3 „ 1

"5 =——砰——=源3応司 咨

Applying the logarithmic derivative to (A) leads immediately to

(D)
-W(1 + z) + W(1 - z) + (1- -z

The application of (1.13) to (D) yields

(E)

where c。= 0 and

m.-yczn

(F) Cn=(气二_2+(_])』+(I广 亦+ 1)(n e N).
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F¥om (A) and (E), we have

8
j"(z) = £(n + 1)如+1Z”

n=0

n=0

cnzn anzn=儔川=
8

which, upon equating the coefficients of zn, yields

n

(G) =〉: Qn—k Ck (?? C N).
k=0

Note also that

(H) 尸（o）_ r（o）
= = 7W = C°-

Now, using (F) to (H), we obtain — 0, and

(I)
3 3

a，3 = <(3)： Q4 二二日=分<(5), • • ■ •

Finally, from (C) and (I), we have 

(3-3)
oo 5

=若⑷,

which was evaluated in an elementary way by using the formula (1.6)
(see Morley [10, p. 402, Eq.(6)]);

(3-4) 3
OO -

匕—77,3
n—1

n—1ft —丄 1
£声=<(5)・

fc=l
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Or, equivalently, (3.4) is rewritten in the form

(3-5)
=6鴻(以)*.
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