• 제목/요약/키워드: Hypergeometric convolution product

검색결과 9건 처리시간 0.017초

THE HARMONIC ANALYSIS ASSOCIATED TO THE HECKMAN-OPDAM'S THEORY AND ITS APPLICATION TO A ROOT SYSTEM OF TYPE BCd

  • Trimeche, Khalifa
    • Korean Journal of Mathematics
    • /
    • 제27권1호
    • /
    • pp.221-267
    • /
    • 2019
  • In the five first sections of this paper we define and study the hypergeometric transmutation operators $V^W_k$ and $^tV^W_k$ called also the trigonometric Dunkl intertwining operator and its dual corresponding to the Heckman-Opdam's theory on ${\mathbb{R}}^d$. By using these operators we define the hypergeometric translation operator ${\mathcal{T}}^W_x$, $x{\in}{\mathbb{R}}^d$, and its dual $^t{\mathcal{T}}^W_x$, $x{\in}{\mathbb{R}}^d$, we express them in terms of the hypergeometric Fourier transform ${\mathcal{H}}^W$, we give their properties and we deduce simple proofs of the Plancherel formula and the Plancherel theorem for the transform ${\mathcal{H}}^W$. We study also the hypergeometric convolution product on W-invariant $L^p_{\mathcal{A}k}$-spaces, and we obtain some interesting results. In the sixth section we consider a some root system of type $BC_d$ (see [17]) of whom the corresponding hypergeometric translation operator is a positive integral operator. By using this positivity we improve the results of the previous sections and we prove others more general results.

Convolution Properties of Certain Class of Multivalent Meromorphic Functions

  • Vijaywargiya, Pramila
    • Kyungpook Mathematical Journal
    • /
    • 제49권4호
    • /
    • pp.713-723
    • /
    • 2009
  • The purpose of the present paper is to introduce a new subclass of meromorphic multivalent functions defined by using a linear operator associated with the generalized hypergeometric function. Some properties of this class are established here by using the principle of differential subordination and convolution in geometric function theory.

SUBORDINATION RESULTS FOR CERTAIN CLASSES OF MULTIVALENTLY ANALYTIC FUNCTIONS WITH A CONVOLUTION STRUCTURE

  • Prajapat, J.K.;Raina, R.K.
    • East Asian mathematical journal
    • /
    • 제25권2호
    • /
    • pp.127-140
    • /
    • 2009
  • In this paper a general class of analytic functions involving a convolution structure is introduced. Among the results investigated are the various results depicting useful properties and characteristics of this function class by employing the techniques of differential subordination. Relevances of the main results with some known results are also mentioned briefly.

SOME RADIUS RESULTS OF ANALYTIC FUNCTIONS ASSOCIATED WITH THE SRIVASTAVA-ATTIYA OPERATOR

  • Kim, Yong Chan;Choi, Jae Ho
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권2호
    • /
    • pp.323-329
    • /
    • 2021
  • The main object of the present paper is to investigate some radius results of the functions f(z) = z + Σn=2 anzn(|z| < 1) with |an| ≤ n for all n ∈ ℕ. Some applications for certain operator defined through convolution are also considered.

Some Inclusion Properties of New Subclass of Starlike and Convex Functions associated with Hohlov Operator

  • Sokol, Janusz;Murugusundaramoorthy, Gangadharan;Kothandabani, Thilagavathi
    • Kyungpook Mathematical Journal
    • /
    • 제56권2호
    • /
    • pp.597-610
    • /
    • 2016
  • For a sufficiently adequate special case of the Dziok-Srivastava linear operator defined by means of the Hadamard product (or convolution) with Srivastava-Wright convolution operator, the authors investigate several mapping properties involving various subclasses of analytic and univalent functions, $G({\lambda},{\alpha})$ and $M({\lambda},{\alpha})$. Furthermore we discuss some inclusion relations for these subclasses to be in the classes of k-uniformly convex and k-starlike functions.

A STARLIKENESS CONDITION ASSOCIATED WITH THE RUSCHEWEYH DERIVATIVE

  • Li, Jian-Lin;Srivastava, H.M.
    • East Asian mathematical journal
    • /
    • 제18권1호
    • /
    • pp.1-13
    • /
    • 2002
  • Some Miller-Mocanu type arguments are used here in order to establish a general starlikeness condition involving the familiar Ruscheweyh derivative. Relevant connections with the various known starlikeness conditions are also indicated. This paper concludes with several remarks and observations in regard especially to the nonsharpness of the main starlike condition presented here.

  • PDF

BOUNDEDNESS OF 𝓒b,c OPERATORS ON BLOCH SPACES

  • Nath, Pankaj Kumar;Naik, Sunanda
    • Korean Journal of Mathematics
    • /
    • 제30권3호
    • /
    • pp.467-474
    • /
    • 2022
  • In this article, we consider the integral operator 𝓒b,c, which is defined as follows: $${\mathcal{C}}^{b,c}(f)(z)={\displaystyle\smashmargin{2}{\int\nolimits_{0}}^z}{\frac{f(w)*F(1,1;c;w)}{w(1-w)^{b+1-c}}}dw,$$ where * denotes the Hadamard/ convolution product of power series, F(a, b; c; z) is the classical hypergeometric function with b, c > 0, b + 1 > c and f(0) = 0. We investigate the boundedness of the 𝓒b,c operators on Bloch spaces.

APPLICATION OF CONVOLUTION THEORY ON NON-LINEAR INTEGRAL OPERATORS

  • Devi, Satwanti;Swaminathan, A.
    • Korean Journal of Mathematics
    • /
    • 제24권3호
    • /
    • pp.409-445
    • /
    • 2016
  • The class $\mathcal{W}^{\delta}_{\beta}({\alpha},{\gamma})$ defined in the domain ${\mid}z{\mid}$ < 1 satisfying $Re\;e^{i{\phi}}\((1-{\alpha}+2{\gamma})(f/z)^{\delta}+\({\alpha}-3{\gamma}+{\gamma}\[1-1/{\delta})(zf^{\prime}/f)+1/{\delta}\(1+zf^{\prime\prime}/f^{\prime}\)\]\)(f/z)^{\delta}(zf^{\prime}/f)-{\beta}\)$ > 0, with the conditions ${\alpha}{\geq}0$, ${\beta}$ < 1, ${\gamma}{\geq}0$, ${\delta}$ > 0 and ${\phi}{\in}{\mathbb{R}}$ generalizes a particular case of the largest subclass of univalent functions, namely the class of $Bazilevi{\check{c}}$ functions. Moreover, for 0 < ${\delta}{\leq}{\frac{1}{(1-{\zeta})}}$, $0{\leq}{\zeta}$ < 1, the class $C_{\delta}({\zeta})$ be the subclass of normalized analytic functions such that $Re(1/{\delta}(1+zf^{\prime\prime}/f^{\prime})+1-1/{\delta})(zf^{\prime}/f))$ > ${\zeta}$, ${\mid}z{\mid}$<1. In the present work, the sucient conditions on ${\lambda}(t)$ are investigated, so that the non-linear integral transform $V^{\delta}_{\lambda}(f)(z)=\({\large{\int}_{0}^{1}}{\lambda}(t)(f(tz)/t)^{\delta}dt\)^{1/{\delta}}$, ${\mid}z{\mid}$ < 1, carries the fuctions from $\mathcal{W}^{\delta}_{\beta}({\alpha},{\gamma})$ into $C_{\delta}({\zeta})$. Several interesting applications are provided for special choices of ${\lambda}(t)$. These results are useful in the attempt to generalize the two most important extremal problems in this direction using duality techniques and provide scope for further research.