DOI QR코드

DOI QR Code

APPLICATION OF CONVOLUTION THEORY ON NON-LINEAR INTEGRAL OPERATORS

  • Devi, Satwanti (Department of Applied Sciences The NorthCap University) ;
  • Swaminathan, A. (Department of Applied Sciences The NorthCap University)
  • Received : 2016.07.07
  • Accepted : 2016.08.25
  • Published : 2016.09.30

Abstract

The class $\mathcal{W}^{\delta}_{\beta}({\alpha},{\gamma})$ defined in the domain ${\mid}z{\mid}$ < 1 satisfying $Re\;e^{i{\phi}}\((1-{\alpha}+2{\gamma})(f/z)^{\delta}+\({\alpha}-3{\gamma}+{\gamma}\[1-1/{\delta})(zf^{\prime}/f)+1/{\delta}\(1+zf^{\prime\prime}/f^{\prime}\)\]\)(f/z)^{\delta}(zf^{\prime}/f)-{\beta}\)$ > 0, with the conditions ${\alpha}{\geq}0$, ${\beta}$ < 1, ${\gamma}{\geq}0$, ${\delta}$ > 0 and ${\phi}{\in}{\mathbb{R}}$ generalizes a particular case of the largest subclass of univalent functions, namely the class of $Bazilevi{\check{c}}$ functions. Moreover, for 0 < ${\delta}{\leq}{\frac{1}{(1-{\zeta})}}$, $0{\leq}{\zeta}$ < 1, the class $C_{\delta}({\zeta})$ be the subclass of normalized analytic functions such that $Re(1/{\delta}(1+zf^{\prime\prime}/f^{\prime})+1-1/{\delta})(zf^{\prime}/f))$ > ${\zeta}$, ${\mid}z{\mid}$<1. In the present work, the sucient conditions on ${\lambda}(t)$ are investigated, so that the non-linear integral transform $V^{\delta}_{\lambda}(f)(z)=\({\large{\int}_{0}^{1}}{\lambda}(t)(f(tz)/t)^{\delta}dt\)^{1/{\delta}}$, ${\mid}z{\mid}$ < 1, carries the fuctions from $\mathcal{W}^{\delta}_{\beta}({\alpha},{\gamma})$ into $C_{\delta}({\zeta})$. Several interesting applications are provided for special choices of ${\lambda}(t)$. These results are useful in the attempt to generalize the two most important extremal problems in this direction using duality techniques and provide scope for further research.

Keywords

References

  1. R. M. Ali, A. O. Badghaish, V. Ravichandran and A. Swaminathan, Starlikeness of integral transforms and duality, J. Math. Anal. Appl. 385 (2012), no. 2, 808-822. https://doi.org/10.1016/j.jmaa.2011.07.014
  2. R. M. Ali, M. M. Nargesi and V. Ravichandran, Convexity of integral transforms and duality, Complex Var. Elliptic Equ. 58 (2013), no. 11, 1569-1590. https://doi.org/10.1080/17476933.2012.693483
  3. R. M. Ali and V. Singh, Convexity and starlikeness of functions defined by a class of integral operators, Complex Variables Theory Appl. 26 (1995), no. 4, 299-309. https://doi.org/10.1080/17476939508814791
  4. B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984), no. 4, 737-745. https://doi.org/10.1137/0515057
  5. J. H. Choi, Y. C. Kim and M. Saigo, Geometric properties of convolution operators defined by Gaussian hypergeometric functions, Integral Transforms Spec. Funct. 13 (2002), no. 2, 117-130. https://doi.org/10.1080/10652460212900
  6. S. Devi and A. Swaminathan, Integral transforms of functions to be in a class of analytic functions using duality techniques, J. Complex Anal. 2014, Art. ID 473069, 10 pp.
  7. S. Devi and A. Swaminathan, Starlikeness of the Generalized Integral Transform using Duality Techniques, 24 pages, Submitted for publication, (http://arxiv.org/abs/1411.5217).
  8. P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York, 1983.
  9. A. Ebadian, R. Aghalary and S. Shams, Application of duality techniques to starlikeness of weighted integral transforms, Bull. Belg. Math. Soc. Simon Stevin 17 (2010), no. 2, 275-285.
  10. R. Fournier and S. Ruscheweyh, On two extremal problems related to univalent functions, Rocky Mountain J. Math. 24 (1994), no. 2, 529-538. https://doi.org/10.1216/rmjm/1181072416
  11. Y. C. Kim and F. Rnning, Integral transforms of certain subclasses of analytic functions, J. Math. Anal. Appl. 258 (2001), no. 2, 466-489. https://doi.org/10.1006/jmaa.2000.7383
  12. Y. Komatu, On analytic prolongation of a family of operators, Mathematica (Cluj) 32(55) (1990), no. 2, 141-145.
  13. P. T. Mocanu, Une propriete de convexite generalisee dans la theorie de la representation conforme, Mathematica (Cluj) 11 (34) (1969), 127-133.
  14. R. Omar, S. A. Halim and R. W. Ibrahim, Convexity and Starlikeness of certain integral transforms using duality, Pre-print.
  15. S. Ruscheweyh, Convolutions in geometric function theory, Seminaire de Mathematiques Superieures, 83, Presses Univ. Montreal, Montreal, QC, 1982.
  16. R. Singh, On Bazilevic functions, Proc. Amer. Math. Soc. 38 (1973), 261-271.
  17. S. Verma, S. Gupta and S. Singh, Order of convexity of integral transforms and duality, Acta Univ. Apulensis Math. Inform. No. 38 (2014), 279-296.