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A STARLIKENESS CONDITION ASSOCIATED
WITH THE RUSCHEWEYH DERIVATIVE

JIAN-LIN L1 AND H. M. SRIVASTAVA

ABSTRACT Some Miller-Mocanu type arguments are used here n
order to establish a general starlikeness condition involving the fa-
miliar Ruscheweyh derivative Relevant connections with the various
known starhkeness conditions are also indicated. This paper concludes
with several remarks and observations in regard especially to the non-
sharpness of the main starlike condition presented herc

1. Introduction

Let A denote the class of functions f normalized by
FO)=f(0)-1=0,
which are analytic in the open unit disk
U:={z:2€C and |2] < 1}.

Also let 8* (y) denote the subclass of A consisting of functions which
are starhke of order v in U (0 < v < 1). As usual, we have

§* =8 (0) (1.1)
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for the class §* of starlike functions in U. The general class §* (7y) can
be characterized as follows:

fes (v @m{z}”(g)} Sy (1.2)

(zeU; feA 0Svy<l).

The familiar Ruscheweyh derivative operator D* : A — A of order A
is defined, in terms of the Hadamard product (or convolution), in the
form (cf. [7]):

z
D f(z) := (m) x f(2) (A2 -1; z€U), (1.3)
which readily implies that

n—1 rs \\(ﬂ)
Dhf(z) =2 TE) e N =NU{0}; z€U), (14)

n!

N being the set of positive integers. In fact, Ruscheweyh [7] made use
of the derivative operator D™ in order to derive new criteria for univa-
lence for functions in A. Subsequently, while considering a problem of
Ruscheweyh and other related results (¢f. {7]; see also [8]), Obradovi¢
[6] established the following criteria for starlikeness.

THEOREM 1 {Obradovié [6, p. 229, Theorem 10]). Let f € A,
az20,a+820, andn € Ny. If

D™2f(z) |7 |D"f(2) l" 1

Dntlf(z) ! Dnf (2} (2n + 3)% (2n + 4)° (z E(U);
1.5

then f € S™.

For special choices of n, a, and 8, Theorem 1 yields several criteria
for starlikeness. Thus, as already observed by Obradovié [6, p. 229,
Corollary 6], each of the following three conditions:

2f"(z) |7 |zf'(z)
() f(2)

o

1
3\2

T eevazo, a9
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R SR

and

2f" (2) (zf' (=) _ 1)*1
fr(z) \ f(z)
implies that f € S*.

Next, by applying Jack’s lemma, Li and Srivastava {2] extended the

conditions (1.6}, (1.7), and (1.8}, and some other related results, to the
following form:

< % (z € U) (1.8)

THEOREM 2 {Li and Srivastava [2, p. 106, Theorem 3]). Let f € A,
20, a+p820,and 5 <y< 1 If

a4

2" (2) T |25 (2) l" o B
) | -‘ 0 —1’ <21 —4) (z € U), (1.9)

then f € S§* ().

The object of the present note is to make use of some Miller-Mocanu
type arguments {cf. [4]) in order to establish a substantially more gen-
cral result than Theorem 1. We also indicate the relevant connections
of our main result (Theorem 3 below) with the starlikeness conditions
asserted by (for example) Theorem 1 and Theorem 2. In the concluding
section (Section 4), we present several remarks and observations deal-
ing especially with the fact that our main starlike condition (Theorem
3 below) is not sharp in general.

2. A Set of Lemmas

Let p € C with R {g) > —1 and define
A(poi) = inf (R(H (2))} @)

(=R Sp<ly,
where
(1 — 2)2(9—1)

H(z) = -
%) Jotn (1 - 2)*@7 ) gy

it (2.2)
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Then it is known that (c¢f. {3, p. 88))

AMpw)zp (-R(p)Spe<l).
Moreover, in the case when yu is real and
1
ﬂzmw{w,—g#} (heR),
the value of A {p, u) is given by (cf. 3, p. 88})
+1)272(-¢)
Mop)= H(-1)= — WD
2P (201 - o)+ L+ 2 -1)
where 3 F) denotes the Gauss hypergeometric function.

The following results (given by Lemma 1 and Lemma 2) will be
required in our present investigation.

LemMMA 1 (Li et al. [3, p. 88, Theorem 1j). If

uy o (2.3)

1
— <
1_6<1 (neN),

then

D™1f(2) D" f(2) Ap,n—1)+n—1
m{ D77 (2) }>‘5:‘”’Et{D"—lf(z)}> " g

(zeU; p={(n+1)§—n; neN).
Ths result 1s sharp.

LEMMA 2. Let 2 be a set in the complex plane C. Suppose elso that
the function

@:C*xU—~C
satisfies the following condition:

d (iz,y;2) ¢ Q (zeU; 2,y €R and yé—%(l +z2)). (2.5)

If p(2) is analyirc in U with
p(0)=1 and ®(p(2),2p' (2);2) €Q (z € U), (2.6)
then
R{p(z)} >0 (z € U).
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REMARK 1. Lemma 2 is a simple consequence of much more general
results considered in the work of Miller and Mocanu (cf,, e.¢, [4]).

3. The Main Result and Its Consequences

In order to state our main result (Theorem 3 below) as simply as

possible, we begin by introducing the following definitions and nota-
tions.

First of all, in terms of A (p, u) given by (2.3), we let
Mo—-k+0)o—n+kn—k—1)+n-k-1

n
8o = and & =
0= k+1

1 n—k
(3.1}
(k€{0,1,2,... ,n—1}; n€eN).
Then it is easily observed that
—k-1
%rgdk+1<l (k€{0,1,2,...,n—1}; n e N).
Next, fora 2 0, a+ 8 2 0, and n € Ny, we set
s 3 @

(Z) (nzO,a+ﬁ=0)

NS

m 18«

o 3 (a+8) la
Aﬂm,n%=ﬁ(§)(y+%g (L+£L) (n="0;0+f # 0)

\(2n2§1)a<n+1)“’(n+2)—“ (n #0),

(32)
where

m::ﬁ+\/ﬁ2+36a(a+ﬁ),

and we note that

M(a,8,n) 2 L

(2n + 3)? (2n + 4)*

(@20; a+820; n€Ng).

(33)
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THEOREM 3. Let fe A, a20,a+ 820, andn € Ny. If

o4

D2f(z)

D) ‘

1225 E@ G apn

then f € S8*(0,), where 8, and M (a, B,n) are defined by (3.1) and
(3-2), respectively.

PrOOF. Suppose that

D™Hf(z) _ pla)+n
Dnf (2) n+1

(ne€ No) . (3.5)

Then the function p(z) is analytic in U with p (0) = 1. Also, from the
known identity:

:(D"F(2) =(n+1)D"f(2)~n D"f(2) (n€Ny), (3.6)

we have

D2f(z) 1 ( zp' (2)

DrHif(z) ~ n+2 p(z)+n+p(z)+n+1)’ (3.7)

which yields

(5t -) (5 =)

1P (s oo N ICTNIA
=+ ) (42 (@) - 1P (SEE ) -1)

=(n+1)"P(n+2)7° 3 (p(2), 20 (2);2),
(3.8)

where, for convenience,

[e4
&, (21,22, 2) = (21 ~ 1)° (21‘2"_ - + 21— 1) . (3.9)
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In view of (3.8}, the hypothesis {3.4) of Theorem 3 is equivalent to
®,(p(2),20' (2);2) € U :={w:weC and |w| < R(a,B,n)}

(n € Np), (3.10)
where
R(c,B,n) = (n+ 1) (n+2)* M (e, 8,n) (3.11)

with M (a, 8,n) given by (3.2).
ForzeU, ¢,y € R, and y £ -1 (1 + 2?), we find from (3.9) that

where

Gu (ry) = (14 1) [(sznz _ 1)2 +r (1 - rfnz)T (3.13)

1
(r=a20syeR vz a4n).

Since

0
a“yGn (Ta y) < 01

it is easily seen from (3.13) that

Grn(1,y) 2 Ga (T,—1+7)

2

+1 T4+n «
— 1 ot T 1
(147) (4(T+n2)+¢+n2+)

=47%(1 4 7)*tP (97 +(2n+ 1)2)0,

(3.14)

T+ n?

: Hy (1)
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and that

L H (r) = 47 (L4 )20 (97 + (20 + 1)2) o ( Fo (7)

dr T +n? T+ n2)%’
(3.15)
where
Fo(r) =9 (a+B) 7% + [90° 20+ B) + (2n+1)° f] 7 516
3.16
+ [(27@-!»1)2712 (o + B) +(n——1)(5n+1)a] :
In the case when n # 0, we find from {3.16) that
F.(r)y20 (r20; neN) (3.17)
which, in conjunction with (3.15), yields
d
Zi?H" (ry20 (r20;, neN), (3.18)
so that
A R AN S A
H, (1) 2 H, (0) = 4 (_?ﬁ__ =5, (3.19)
(r20; neN).
Thus, from (3.12) and (3.14), we obtain
2n+1

B, (iz,y;2) € QO = {w:weC and |w| < ( )a =R(a,6.n)}

(3.20)
Next, in the case when n = 0, we observe from (3.16) with a+83 #0
that
Fo(r)=9(a+ )7+ 8T -«

=9(a+B)(r+71)(r— 1),
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where

Ty

_YPH36alatp+p /B F36a(atB) A
18 (o + ) 2 18 (o + B)

v

0

{(az20; a+5>0).
Thus, from (3.15) and (3.16) unth n = 0, we have

Ho (1) 2 Ho(m2) = (%) (1 + 25) " (1 + ;:—a)a (3.21)
=[R(,8,0]"  (r20),
which, by virtue of (3.12) and (3.14), shows that
Yo (1z,y;2) € Qo ={w.weC and |uw] < R{x,pb,0)}, (3.22)
m being given, as before, with (3.2).

Finally, in the case when n = 0 and o + 8 = 0, it is readily seen
from (3.16) that

Fo(r)=B(r+1l)=~a(r+1)20 (20 720),
and (3.15) yields
d
—F < >
d,rI‘{O (T) = 0 (T = 0) )
so that

Ho(r)y2 lim Hp(7) = (9) = (R (o, S, 0)]2 (r20), (3.23)
T-300 4
which shows that (3.22) holds true in this case as well.

Thus, for z,y € R and y £ —1 (1 +2?), we have established the
needed condition that

¢, (1z,y452) ¢ Qp = {w - we C and |w| < R{a, B,n)}} (n € Ng)
(3.24)
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in oll cases listed in (3.2). Therefore, in view of (3.10}), we deduce from
Lemma 2 that

Drf ()] Ri{p(x)}+n no _
fR{ an(z)}— ntl >n+1_~60 (z € U; neNp),
(3.25)
where Jg is defined by (3.1).
By applying Lemma 1, we find that, if
Dn—k+1f (z)
) > 20
(z€eU; ke {0,1,2,...,n—1}; neN),
then £ (2)
D=Ff(z
R {m} > Jkﬂ (3.27)

(zeU: ke€{0,1,2,...,n—1}; neN),

where § is defined by (3.1). So, if we start with the hypothesis (3.25),
we immediately obtain

m{z;’(ij)}:m{g%%}ﬂn (z €Uy, (3.28)

which implies that f € §* (§,,). This evidently completes the proof of
Theorem 3

REMARK 2. In view of the inequality (3.3}, Theorem 3 provides a
significant improvement over Theorem 1. Furthermore, by assigning
smitable special values to the various parameters involved, we can de-
duce several simpler consequences of Theorem 3. Thus, for example,
we can show that the condition:

zf" (2) zf' (2) B
f'(2) f(2)

e ]

=

1

<) [ ]
2 1-a+ Va2 +34a+1

1
5 &

l—a+ Vol +34a+1
' [1 + 18
(3.29)
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(zeU; a>0)

or, in particular, the condition:

= 2.2443697 - - -

2f"(2) (2 (2) _ 35473\ [194/73
o (76 1)l<( 7 ) 2
(3.30)

(z € U)
implies that f € S&*.

REMARK 3. In the special case when n = 0 and a + 8 = 0, both
Theorem 3 and Theorem 1 yield the same result which does not seem
to improve Theorem 2.

4. Concluding Remarks and Observations

Just as Obradovié’s starlikeness condition (1.5) given by Theorem
1, our main starlikeness condition (3.4) is not sharp in the general form
in which it is stated {see Theorem 3). Thus it would seem to be an
interesting open problem to determine the best possible constants in-
volved in Theorem 3. It should also be mentioned in this connection
that, by applying a certain result of Ruscheweyh and Singh {9] involv-
ing confluent hypergeometric functions, Li and Srivastava [2, p. 108,
Theorem 5] obtained a partially sharp result of this type for functions
f (z) to be starlike of order v in U {0 £ vy < 1).

In its limit case when o — 0+, the starlikeness condition (3.29)
readily yields

o' (2)
F

which indeed is a sharp result. Furthermore, in its special case when
a = 1, the starlikeness condition (3.29) was obtained by Miller and
Mocanu {5], thereby improving several known results on this subject
given by (among others) Singh and Singh [10] and Anisiu and Mocanu
(1] (see also {2]).

1l<1 (zeU), (4.1)
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Finally, it should be pointed out that both (3.2) and (3.29) hold

true in the limit case when o — 0+. For example, we find from (3.2)
that

1

lim {M (c, )}tm

a—0-+ (n€No; B#0), (4.2)

and the limit case of (3.29) when a — 0+ is already given by (4.1)
above. The exceptional case when

is clearly excluded in each of the above three theorems.
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