Bounded Mocanu Variation Properties of Certain Subclass of Meromorphic Functions Involving a Family of Linear Operator

Ali Muhammad
Department of Basic Sciences University of Engineering and Technology Peshawar, Pakistan
e-mail: ali7887@gmail.com

AbStract. In this paper, we introduce a new subclass of meromorphic functions defined in the punctured unit disc.We derive inclusion relationships, radius problem and some other interesting properties of this class are investigated.

1. Introduction

Let \mathcal{M} denote the class of functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{k=0}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic in the punctured open unit disc $E^{*}=\{z: z \in \mathbb{C}$ and $0<|z|<1\}$ $=E \backslash\{0\}$.

If $f(z)$ is given by (1.1) and $g(z)$ is given by

$$
\begin{equation*}
g(z)=\frac{1}{z}+\sum_{k=0}^{\infty} b_{k} z^{k} \tag{1.2}
\end{equation*}
$$

we define the Hadamard product (or convolution) of $f(z)$ and $g(z)$ by

$$
\begin{equation*}
(f \star g)(z)=\frac{1}{z}+\sum_{k=0}^{\infty} a_{k} b_{k} z^{k}=(g \star f)(z) \quad(z \in E) \tag{1.3}
\end{equation*}
$$

Let $P_{k}(\rho)$ be the class of functions $p(z)$ analytic in E with $p(0)=1$ and

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\frac{\Re_{p(z)}-\rho}{1-\rho}\right| d \theta \leq k \pi, z=r e^{i \theta} \tag{1.4}
\end{equation*}
$$

Received April 13, 2011; accepted January 28, 2014.
2010 Mathematics Subject Classification: 30C45, 30C50.
Key words and phrases: Meromorphic functions, Generalized hypergeometric functions, Functions with positive real part, Hadamard product(or convolution), Linear operators.
where $k \geqslant 2$ and $0 \leq \rho<1$. This class was introduced by Padmanbhan et. al. in [13]. We note that $P_{k}(0)=P_{k}$, see Pinchuk [14], $P_{2}(\rho)=P(\rho)$, the class of analytic functions with positive real part greater than ρ and $P_{2}(0)=P$, the class of functions with positive real part. From (1.4) we can easily deduce that $p(z) \in P_{k}(\rho)$ if, and only if, there exists $p_{1}(z), p_{2}(z) \in P(\rho)$ such that for $z \in E$,

$$
\begin{equation*}
p(z)=\left(\frac{k}{4}+\frac{1}{2}\right) p_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) p_{2}(z) . \tag{1.5}
\end{equation*}
$$

In recent years, several families of integral operators and differential operators were introduced using Hadamard product (or convolution). For example, we choose to mention the Rushcheweyh derivative [15], the Carlson-Shaffer operator [1], the Dzoik-Srivastava operator [4], the Noor integral operator [12] also see, [3, 6, 7, 11]. Motivated by the work of N. E. Cho and K. I. Noor [2, 9], we introduce a family of integral operators defined on the space of meromorphic functions in the class \mathcal{M},see [16]. By using these integral operators, we define a new subclass of meromorphic functions and investigate various inclusion relationships, radius problem and some other properties for the meromorphic function classes introduced here.

For a complex parameters $\alpha_{1}, \ldots, \alpha_{q}$ and $\beta_{1}, \ldots, \beta_{s} \quad\left(\beta_{j} \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}=\{0,-1,-2, \ldots\} ;\right.$ $j=1, \ldots, s)$, we now define the function $\phi\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right)$ by

$$
\begin{aligned}
\phi\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right) & =\frac{1}{z}+\sum_{k=0}^{\infty} \frac{\left(\alpha_{1}\right)_{k+1} \ldots\left(\alpha_{q}\right)_{k+1}}{\left(\beta_{1}\right)_{k+1} \ldots\left(\beta_{s}\right)_{k+1}\{(k+1)!} z^{k} \\
(q & \left.\leq s+1 ; s \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\} ; \mathbb{N}=\{1,2, \ldots\} ; z \in E\right)
\end{aligned}
$$

where $(v)_{k}$ is the Pochhammer symbol(or shifted factorial) defined in (terms of the Gamma function) by

$$
(v)_{k}=\frac{\Gamma(v+k)}{\Gamma(v)}= \begin{cases}1 & \text { if } k=0 \text { and } v \in \mathbb{C} \backslash\{0\} \\ v(v+1) \ldots(v+k-1) & \text { if } k \in \mathbb{N} \text { and } v \in \mathbb{C} .\end{cases}
$$

Now we introduce the following operator

$$
I_{\mu}^{p}\left(\alpha_{1}, \ldots, \alpha_{q}, \beta_{1}, \ldots, \beta_{s}\right): \mathcal{M} \longrightarrow \mathcal{M}
$$

as follows:
Let $F_{\mu, p}(z)=\frac{1}{z}+\sum_{k=0}^{\infty}\left(\frac{k+\mu+1}{\mu}\right)^{p} z^{k}, p \in \mathbb{N}_{0}, \mu \neq 0$ and let $F_{\mu, p}^{-1}(z)$ be defined such that

$$
F_{\mu, p}(z) * F_{\mu, p}^{-1}(z)=\phi\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right)
$$

Then

$$
\begin{equation*}
I_{\mu}^{p}\left(\alpha_{1}, \ldots, \alpha_{q}, \beta_{1}, \ldots, \beta_{s}\right) f(z)=F_{\mu, p}^{-1}(z) * f(z) \tag{1.6}
\end{equation*}
$$

From (1.6) it can be easily seen

$$
\begin{equation*}
I_{\mu}^{p}\left(\alpha_{1}, \ldots, \alpha_{q}, \beta_{1}, \ldots, \beta_{s}\right) f(z)=\frac{1}{z}+\sum_{k=0}^{\infty}\left(\frac{\mu}{k+\mu+1}\right)^{p} \frac{\left(\alpha_{1}\right)_{k+1} \ldots\left(\alpha_{q}\right)_{k+1}}{\left(\beta_{1}\right)_{k+1} \ldots\left(\beta_{s}\right)_{k+1}\{ \}(k+1)!} z^{k} \tag{1.7}
\end{equation*}
$$

For conveniences, we shall henceforth denote

$$
\begin{equation*}
I_{\mu}^{p}\left(\alpha_{1}, \ldots, \alpha_{q}, \beta_{1}, \ldots, \beta_{s}\right) f(z)=I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z) \tag{1.8}
\end{equation*}
$$

For the choices of the parameters $p=0, q=2, s=1$, the operator $I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z)$ is reduced to an operator by N. E. Cho and K. I. Noor [2] and K. I. Noor [9] and when $p=0, q=2, s=1, \alpha_{1}=\lambda, \alpha_{2}=1, \beta_{1}=(n+1)$, the operator $I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z)$ is reduced to an operator recently introduced by S. -M. Yuan et. al. in [17].

It can be easily verified from the above definition of the operator $I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z)$ that

$$
\begin{equation*}
z\left(I_{\mu}^{p+1}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)^{\prime}=\mu I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z)-(\mu+1) I_{\mu}^{p+1}\left(\alpha_{1}, \beta_{1}\right) f(z) \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
z\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)^{\prime}=\alpha_{1} I_{\mu}^{p}\left(\alpha_{1}+1, \beta_{1}\right) f(z)-\left(\alpha_{1}+1\right) I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z) \tag{1.10}
\end{equation*}
$$

By using the operator $I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z)$, we now introduce the following subclass of meromorphic functions:

Definition 1.3. Let $\lambda \in \mathbb{C}$ with $\Re \lambda>0, f \in \mathcal{M}, p \in \mathbb{N}_{0}, 0 \leq \rho<1, \alpha=\mu>0$ and $k \geq 2$. Then $f \in B_{k, \mu}^{\lambda, p}\left(\alpha_{1}, \beta_{1}, \alpha, \rho\right)$, if and only if
$\left\{(1-\lambda)\left(\frac{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)}{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) g(z)\right)}\right)^{\alpha}+\lambda\left(\frac{\left(I_{\mu}^{p}\left(\alpha_{1}+1, \beta_{1}\right) f(z)\right)}{\left(I_{\mu}^{p}\left(\alpha_{1}+1, \beta_{1}\right) g(z)\right)}\right)\left(\frac{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)}{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) g(z)\right)}\right)^{\alpha-1}\right\}$
$\in P_{k}(\rho)$,
where $g \in \mathcal{M}$ satisfies the condition:

$$
\begin{equation*}
\left(\frac{\left(I_{\mu}^{p}\left(\alpha_{1}+1, \beta_{1}\right) g(z)\right)}{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) g(z)\right)}\right) \in P(\eta), z \in E, \text { with } 0 \leq \eta<1 \tag{1.11}
\end{equation*}
$$

Unless otherwise mentioned, we assume through this paper that $p \in \mathbb{N}_{0}, 0 \leq \rho<1$, $\alpha=\mu>0$.

2. Preliminary Results

In order to establish our main results, we need the following Lemma which is properly known as the Miller-Mocanu Lemma.
Lemma 2.1 [8]. Let $u=u_{1}+i u_{2}, v=v_{1}+i v_{2}$ and $\Psi(u, v)$ be a complex valued function satisfying the conditions:
(i) $\Psi(u, v)$ is continuous in a domain $D \subset \mathbb{C}^{2}$,
(ii) $(1,0) \in D$ and $\Re \Psi(1,0)>0$,
(iii) $\Re \Psi\left(i u_{2}, v_{1}\right) \leq 0$, whenever $\left(i u_{2}, v_{1}\right) \in D$ and $v_{1} \leq-\frac{1}{2}\left(1+u_{2}^{2}\right)$.

If $h(z)=1+c_{1} z+c_{2} z^{2}+\cdots$ is a function analytic in E such that $\left(h(z), z h^{\prime}(z)\right) \in D$
and $\Re \Psi\left(h(z), z h^{\prime}(z)\right)>0$ for $z \in E$, then $\Re h(z)>0$ in E.

3. Main Results

Theorem 3.1. Let $\lambda \in \mathbb{C} \backslash\{0\}$ with $\Re \lambda>0$ and $f \in B_{k, \mu}^{\lambda, p}\left(\alpha_{1}, \beta_{1}, \alpha, \rho\right)$. Then $\left(\frac{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)}{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) g(z)\right)}\right)^{\alpha} \in P_{k}(\gamma)$,
where

$$
\begin{equation*}
\gamma=\frac{2 \mu \alpha_{1} \rho+\lambda \delta}{2 \mu \alpha_{1}+\lambda \delta} \tag{3.1}
\end{equation*}
$$

and $g \in \mathcal{M}$ satisfies the condition (1.11)

$$
\delta=\frac{\Re h_{0}(z)}{\left|h_{0}(z)\right|^{2}}, \quad h_{0}(z)=\left(\frac{\left(I_{\mu}^{p}\left(\alpha_{1}+1, \beta_{1}\right) g(z)\right)}{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) g(z)\right)}\right) .
$$

Proof. Set

$$
\begin{equation*}
\left(\frac{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)}{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) g(z)\right)}\right)^{\alpha}=(1-\gamma) h(z)+\gamma \tag{3.2}
\end{equation*}
$$

$h(0)=1$, and $h(z)$ is analytic in E and we can write

$$
\begin{equation*}
h(z)=\left(\frac{k}{4}+\frac{1}{2}\right) h_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) h_{2}(z) . \tag{3.3}
\end{equation*}
$$

Differentiating (3.2) with respect to z and using the identity (1.10), we have

$$
\begin{align*}
& \left\{(1-\lambda)\left(\frac{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)}{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) g(z)\right)}\right)^{\alpha}+\lambda\left(\frac{\left(I_{\mu}^{p}\left(\alpha_{1}+1, \beta_{1}\right) f(z)\right)}{\left(I_{\mu}^{p}\left(\alpha_{1}+1, \beta_{1}\right) g(z)\right)}\right)\left(\frac{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)}{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) g(z)\right)}\right)^{\alpha-1}\right\} \tag{3.4}\\
& \quad= \\
& \quad\left(\frac{k}{4}+\frac{1}{2}\right)\left\{(1-\gamma) h_{1}(z)+\gamma-\rho+\frac{\lambda(1-\gamma) z h_{1}^{\prime}(z)}{\alpha \alpha_{1} h_{0}(z)}\right\} \\
& \quad-\left(\frac{k}{4}-\frac{1}{2}\right)\left\{(1-\gamma) h_{2}(z)+\gamma-\rho+\frac{\lambda(1-\gamma) z h_{2}^{\prime}(z)}{\alpha \alpha_{1} h_{0}(z)}\right\} .
\end{align*}
$$

Now we form the functional $\Psi(u, v)$ by choosing $u=h_{i}(z)=u_{1}+i u_{2}$ and $v=$ $z h_{i}^{\prime}(z)=v_{1}+i v_{2}$. Thus

$$
\Psi(u, v)=\left\{(1-\gamma) u+\gamma-\rho+\frac{\lambda(1-\gamma) v}{\alpha \alpha_{1} h_{0}(z)}\right\} .
$$

The first two conditions of Lemma 2.1 are clearly satisfied. We verify the condition (iii) as follows:

$$
\Psi\left(i u_{2}, v_{1}\right)=\gamma-\rho+\frac{\lambda(1-\gamma) v_{1} \Re h_{0}(z)}{\alpha \alpha_{1}\left|h_{0}(z)\right|^{2}}=\gamma-\rho+\frac{\lambda(1-\gamma) v_{1} \delta}{\alpha \alpha_{1}}
$$

where $\delta=\frac{\Re h_{0}(z)}{\left|h_{0}(z)\right|^{2}}$.
Now, for $v_{1} \leq-\frac{1}{2}\left(1+u_{2}^{2}\right)$, we have

$$
\begin{gathered}
\Re \Psi\left(i u_{2}, v_{1}\right) \leq \gamma-\rho-\frac{1}{2} \frac{\lambda(1-\gamma)\left(1+u_{2}^{2}\right) \delta}{\alpha \alpha_{1}} \\
=\frac{2 \alpha \alpha_{1}(\gamma-\rho)-\lambda \delta(1-\gamma)-\lambda \delta(1-\gamma) u_{2}^{2}}{2 \mu \alpha_{1}}=\frac{A+B u_{2}^{2}}{2 C}, \quad C>0 \\
A=2 \alpha \alpha_{1}(\gamma-\rho)-\lambda \delta(1-\gamma), B=-\lambda \delta(1-\gamma) \leq 0 .
\end{gathered}
$$

Now $\Re \Psi\left(i u_{2}, v_{1}\right) \leq 0$ if $A \leq 0$ and this gives us γ as defined by (3.1). We now applying Lemma 2.1 to conclude that $h_{i} \in P$ for $z \in E$ and thus $h \in P_{k}$ which gives us the required result.

We note that $\gamma=\rho$ when $\eta=0$.
Theorem 3.2. For $\lambda \geq 1$, let $f \in B_{k, \mu}^{\lambda, p}\left(\alpha_{1}, \beta_{1}, 1, \rho\right)$. Then

$$
\left(\frac{\left(I_{\mu}^{p}\left(\alpha_{1}+1, \beta_{1}\right) f(z)\right)}{\left(I_{\mu}^{p}\left(\alpha_{1}+1, \beta_{1}\right) g(z)\right)}\right) \in P_{k}(\rho), \text { for } z \in E
$$

Proof. We can write, for $\lambda \geq 1$,

$$
\begin{aligned}
\lambda\left(\frac{\left(I_{\mu}^{p}\left(\alpha_{1}+1, \beta_{1}\right) f(z)\right)}{\left(I_{\mu}^{p}\left(\alpha_{1}+1, \beta_{1}\right) g(z)\right)}\right)= & \left\{(1-\lambda)\left(\frac{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)}{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) g(z)\right)}\right)+\lambda\left(\frac{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)}{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) g(z)\right)}\right)\right\} \\
& +(\lambda-1)\left(\frac{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)}{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) g(z)\right)}\right) .
\end{aligned}
$$

This implies that

$$
\begin{aligned}
\left(\frac{\left(I_{\mu}^{p}\left(\alpha_{1}+1, \beta_{1}\right) f(z)\right)}{\left(I_{\mu}^{p}\left(\alpha_{1}+1, \beta_{1}\right) g(z)\right)}\right)= & \frac{1}{\lambda}\left\{(1-\lambda)\left(\frac{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)}{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) g(z)\right)}\right)+\lambda\left(\frac{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)}{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) g(z)\right)}\right)\right\} \\
& +\left(1-\frac{1}{\lambda}\right)\left(\frac{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)}{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) g(z)\right)}\right) \\
= & \frac{1}{\lambda} H_{1}(z)+\left(1-\frac{1}{\lambda}\right) H_{2}(z) .
\end{aligned}
$$

Since $H_{1}(z), H_{2}(z) \in P_{k}(\rho)$, by Theorem 3.1, Definition 3.1 and $P_{k}(\rho)$ is a convex set, see [10], we obtain the required result.

Theorem 3.3. Let $\lambda \in \mathbb{C} \backslash\{0\}$ with $\Re \lambda>0$. If $f \in \mathcal{M}$ satisfies the following condition:
$\left\{(1-\lambda)\left(z\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)\right)^{\alpha}+\lambda\left(z\left(I_{\mu}^{p}\left(\alpha_{1}+1, \beta_{1}\right) f(z)\right)\right)\left(z\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)\right)^{\alpha-1}\right\} \in$ $P_{k}(\rho)$, for $\alpha>0\left(z \in E^{*}\right)$, then

$$
\left(z\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)\right)^{\alpha} \in P_{k}(\sigma)
$$

where

$$
\sigma=\rho+(1-\rho)\left(2 \sigma_{1}-1\right) \text { with } \sigma_{1}=\int_{0}^{1}\left(1+t^{\Re \frac{\lambda}{\mu \alpha_{1}}}\right) d t
$$

The value of σ is best possible and cannot be improved.
Proof. We set

$$
\left(z\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)\right)^{\alpha}=h(z)=\left(\frac{k}{4}+\frac{1}{2}\right) h_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) h_{2}(z)
$$

where $h(0)=1$ and h is analytic in E. Then by a simple computation together with (1.10), we have

$$
\begin{aligned}
& \left\{(1-\lambda)\left(z\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)\right)^{\alpha}+\lambda\left(z\left(I_{\mu}^{p}\left(\alpha_{1}+1, \beta_{1}\right) f(z)\right)\right)\left(z\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)\right)^{\alpha-1}\right\} \\
& =\left\{h(z)+\frac{\lambda z h^{\prime}(z)}{\mu \alpha_{1}}\right\} \in P_{k}(\rho), \quad z \in E
\end{aligned}
$$

Using Lemma 2.2, we note that $h_{i}(z) \in P(\sigma)$,

$$
\begin{gather*}
\sigma=\rho+(1-\rho)\left(2 \sigma_{1}-1\right), \\
\sigma_{1}=\int_{0}^{1}\left(1+t^{\Re \frac{\lambda}{\mu \alpha_{1}}}\right) d t, \tag{3.5}
\end{gather*}
$$

and consequently $h(z) \in P_{k}(\sigma)$ and this gives the required result.
We note that σ_{1} given by (3.5) can be expressed in terms of hypergeometric function as

$$
\begin{aligned}
\sigma_{1} & =\int_{0}^{1}\left(1+t^{\Re \frac{\lambda}{\mu \alpha_{1}}} d t\right) \\
& =\frac{\mu \alpha_{1}}{\lambda_{1}} \int_{0}^{1} u^{\frac{\mu \alpha_{1}}{\lambda_{1}}-1}(1+u)^{-1} d u, \quad\left(\lambda_{1}=\Re \lambda>0\right) \\
& ={ }_{2} F_{1}\left(1, \frac{\mu \alpha_{1}}{\lambda_{1}} ; 1+\frac{\mu \alpha_{1}}{\lambda_{1}} ;-1\right) \\
& ={ }_{2} F_{1}\left(1,1 ; 1+\frac{\mu \alpha_{1}}{\lambda_{1}} ; \frac{1}{2}\right) .
\end{aligned}
$$

Consider the operator defined by

$$
\begin{equation*}
F_{c}=\left(\frac{c}{z^{c}} \int_{0}^{z} t^{c}(f(t)) d t\right) \quad\left(c>0 ; z \in E^{*}\right) \tag{3.6}
\end{equation*}
$$

It is clear that the function $F_{c} \in \mathcal{M}$ and

$$
\begin{equation*}
z\left(\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) F_{c}(f)\right)^{\prime}(z)=c\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z)-(c+1)\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) F_{c}(f)(z)\right.\right.\right. \tag{3.7}
\end{equation*}
$$

Theorem 3.4. Let $\lambda \in \mathbb{C} \backslash\{0\}$ with $\Re \lambda>0$. If $f \in \mathcal{M}$ satisfies the following condition:

$$
\begin{equation*}
\left\{(1 - \lambda) \left(z\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) F_{c}(f)(z)\right)+\lambda z\left(\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)\right\} \in P_{k}(\rho), \text { for }\left(z \in E^{*}\right)\right.\right. \tag{3.8}
\end{equation*}
$$

then the function defined by

$$
\begin{equation*}
\left(z\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) F_{c}(f)(z)\right) \in P_{k}\left(\rho_{1}\right),\right. \tag{3.9}
\end{equation*}
$$

where

$$
\rho_{1}=\rho+(1-\rho)\left(2 \sigma_{2}-1\right) \text { with } \sigma_{2}=\int_{0}^{1}\left(1+t^{\Re \frac{\lambda}{c}} d t\right)
$$

The value of ρ_{1} is best possible and cannot be improved.
Proof. Set

$$
\begin{equation*}
\left(z\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) F_{c}(f)(z)\right)=h(z)=\left(\frac{k}{4}+\frac{1}{2}\right) h_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) h_{2}(z) .\right. \tag{3.10}
\end{equation*}
$$

Then $h(z)$ is analytic in E with $h(0)=1$.
Differentiating equation (3.10) with respect z and using (3.7) in the resulting equation, we have

$$
\begin{gathered}
\left\{(1 - \lambda) \left(z\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) F_{c}(f)(z)\right)+\lambda z\left(\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)\right\}\right.\right. \\
=\left\{h(z)+\frac{\lambda}{c} z h^{\prime}(z)\right\} \in P_{k}(\rho), \quad z \in E .
\end{gathered}
$$

Using Lemma 2.2, we note that $h_{i}(z) \in P\left(\rho_{1}\right)$,

$$
\rho_{1}=\rho+(1-\rho)\left(2 \sigma_{2}-1\right),
$$

$$
\begin{equation*}
\sigma_{2}=\int_{0}^{1}\left(1+t^{\Re \frac{\lambda}{c}} d t\right) \tag{3.11}
\end{equation*}
$$

and consequently $h(z) \in P_{k}\left(\rho_{1}\right)$ and this gives the required result.
In term of hypergeometric function σ_{2} can be written as

$$
\sigma_{2}={ }_{2} F_{1}\left(1,1 ; \frac{c}{\operatorname{Re} \lambda}+1 ; \frac{1}{2}\right)
$$

Theorem 3.5. For $0 \leq \lambda_{2}<\lambda_{1}$,

$$
B_{k, \mu}^{\lambda_{1}, p}\left(\alpha_{1}, \beta_{1}, \alpha, \rho\right) \subset B_{k, \mu}^{\lambda_{2}, p}\left(\alpha_{1}, \beta_{1}, \alpha, \rho\right) .
$$

If $\lambda_{2}=0$, then the proof is immediate from Theorem 3.1. Let $\lambda_{2}>0$ and $f \in B_{k, \mu}^{\lambda_{1}, p}\left(\alpha_{1}, \beta_{1}, \alpha, \rho\right)$. Then there exist two functions $H_{1}, H_{2} \in P_{k}(\rho)$ such that $\left\{\left(1-\lambda_{1}\right)\left(\frac{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)}{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) g(z)\right)}\right)^{\alpha}+\lambda_{1}\left(\frac{\left(I_{\mu}^{p}\left(\alpha_{1}+1, \beta_{1}\right) f(z)\right)}{\left(I_{\mu}^{p}\left(\alpha_{1}+1, \beta_{1}\right) g(z)\right)}\right)\left(\frac{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)}{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) g(z)\right)}\right)^{\alpha-1}\right\}=H_{1}(z)$,
and

$$
\left(\frac{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)}{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) g(z)\right)}\right)^{\alpha}=H_{2}(z) .
$$

Then
(3.12)

$$
\begin{gathered}
\left\{\left(1-\lambda_{2}\right)\left(\frac{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)}{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) g(z)\right)}\right)^{\alpha}+\lambda_{2}\left(\frac{\left(I_{\mu}^{p}\left(\alpha_{1}+1, \beta_{1}\right) f(z)\right)}{\left(I_{\mu}^{p}\left(\alpha_{1}+1, \beta_{1}\right) g(z)\right)}\right)\left(\frac{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)}{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) g(z)\right)}\right)^{\alpha-1}\right\} \\
=\frac{\lambda_{2}}{\lambda_{1}} H_{1}(z)+\left(1-\frac{\lambda_{2}}{\lambda_{1}}\right) H_{2}(z)
\end{gathered}
$$

and since $P_{k}(\rho)$ is a convex set, see [10], it follows that the right hand side of (3.12) belongs to $P_{k}(\rho)$ and this completes the proof.

We next take the converse case of Theorem 3.1 as follows:
Theorem 3.6. Let $\left(\frac{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)}{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) g(z)\right)}\right)^{\alpha} \in P_{k}(\rho)$ with $\left(\frac{\left(I_{\mu}^{p}\left(\alpha_{1}+1, \beta_{1}\right) f g(z)\right.}{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) g(z)\right.}\right) \in P(\eta)$,
for $z \in E$. Then $\left.f \in B_{k, \mu}^{\lambda, p}\left(\alpha_{1}, \beta_{1}, \alpha, \rho\right)\right)$ for $|z|<r$, where r is given by

$$
\begin{equation*}
r=\frac{\mu \alpha_{1}}{\left\{(1-\eta) \mu \alpha_{1}+|\lambda|\right\}+\sqrt{\eta \mu\left(\alpha_{1}\right)^{2}+|\lambda|^{2}+2|\lambda|(1-\eta) \mu \alpha_{1}}} . \tag{3.13}
\end{equation*}
$$

Proof. Let

$$
\begin{aligned}
\left(\frac{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)}{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) g(z)\right)}\right)^{\alpha} & =H \\
\left(\frac{\left(I_{\mu}^{p}\left(\alpha_{1}+1, \beta_{1}\right) f g(z)\right.}{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) g(z)\right.}\right) & =H_{0}
\end{aligned}
$$

then $H \in P_{k}(\rho), H_{0} \in P(\eta)$.
Proceeding as in Theorem 3.1, for $\mu>0, k \geq 2, \lambda \in \mathbb{C} \backslash\{0\}, 0 \leq \rho, \eta<1$, and

$$
\begin{aligned}
H & =(1-\rho) h+\rho \\
H_{0} & =(1-\eta) h_{0}+\eta, \quad \text { with } h \in P_{k}, h_{0} \in P
\end{aligned}
$$

we have
$\frac{1}{1-\rho}\left\{(1-\lambda)\left(\frac{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)}{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) g(z)\right)}\right)^{\alpha}+\lambda\left(\frac{\left(I_{\mu}^{p}\left(\alpha_{1}+1, \beta_{1}\right) f(z)\right)}{\left(I_{\mu}^{p}\left(\alpha_{1}+1, \beta_{1}\right) g(z)\right)}\right)\left(\frac{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)}{\left(I_{\mu}^{p}\left(\alpha_{1}, \beta_{1}\right) g(z)\right)}\right)^{\alpha-1}-\rho\right\}$
$=\left\{h(z)+\frac{\lambda}{\mu \alpha_{1}} \frac{z h^{\prime}(z)}{(1-\eta) h_{0}(z)+\eta}\right\}$
$=\left(\frac{k}{4}+\frac{1}{2}\right)\left[h_{1}(z)+\frac{\lambda}{\mu \alpha_{1}} \frac{z h_{1}^{\prime}(z)}{\left\{(1-\eta) h_{0}(z)+\eta\right\}}\right]-\left(\frac{k}{4}-\frac{1}{2}\right)\left[h_{2}(z)+\frac{\lambda}{\mu \alpha_{1}} \frac{z h_{2}^{\prime}(z)}{\left\{(1-\eta) h_{0}(z)+\eta\right\}}\right]$.
Using well known estimates, see [5], for $h_{i} \in P$,

$$
\begin{aligned}
& \left|z h_{i}^{\prime}(z)\right| \quad \leq \quad \frac{2 r \Re h_{i}(z)}{1-r^{2}} \\
& \frac{1-r}{1+r} \leq\left|h_{i}(z)\right| \leq \frac{1+r}{1-r}
\end{aligned}
$$

we have

$$
\begin{aligned}
& \Re\left[h_{i}(z)+\frac{\lambda}{\mu \alpha_{1}} \frac{z h_{i}^{\prime}(z)}{\left\{(1-\eta) h_{0}(z)+\eta\right\}}\right] \geq \Re h_{i}(z)\left[1-\frac{2|\lambda| r}{\mu \alpha_{1}} \frac{1}{1-r^{2}}\left(\frac{1+r}{(1-(1-2 \eta) r)}\right)\right] \\
& \geq \Re h_{i}(z)\left[1-\frac{2|\lambda| r}{\mu \alpha_{1}} \frac{1}{1-r}\left(\frac{1+r}{(1-(1-2 \eta) r)}\right)\right] \\
& \geq \Re h_{i}(z)\left[\frac{\mu \alpha_{1}\left[\left(1-r-(1-2 \eta) r+(1-2 \eta) r^{2}\right]-2|\lambda| r\right.}{\mu \alpha_{1}(1-r)\{1-(1-(1-2 \eta) r\}}\right] \\
& \geq \Re h_{i}(z)\left[\frac{\mu \alpha_{1}(1-2 \eta) r^{2}-2\left[(1-\eta) \mu \alpha_{1}+|\lambda|\right] r+\mu \alpha_{1}}{\mu} \alpha_{1}(1-r) 1-(1-(1-2 \eta) r)\right] .
\end{aligned}
$$

Right hand side of (3.14) is positive for $|z|<r$, where r is given by (3.13).

References

[1] B. C. Carlson and B. D. Shaeffer, Starlike and prestarlike hypergeometric functions, SIAM, J. Math. Anal., 15(1984), 737-745.
[2] N. E. Cho and K. I. Noor, Inclusion properties for certain classes of meromorphic functions associated with Choi-Saigo-Srivastava operator, J. Math. Anal. Appl., 320(2006), 779-786.
[3] N. E. Cho, O. S. Kwon and H. M. Srivastava, Inclusion relationships for certain subclasses of meromorphic functions associated with a family of multiplier transformations, Integral Transforms Spec. Funct., 16(8)(2005), 647-659.
[4] J. Dzoik and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 103(1)(1999), 1-13.
[5] A. W. Goodman, Univalent functions, VOl. I, II, Polygonal Publishing House, Washington, N. J., 1983.
[6] E. Y. Holov, Operators and operations in the class of univalent functions, Izv. Vyss. Ucebn. Matematika, 10(1978), 83-89.
[7] I. B. Jung, Y. C. Kim and H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal., 176(1993), 138-147.
[8] S. S. Miller, Differential inequalities and Caratheodory functions, Bull. Amer. Math. Soc., 81(1975), 79-81.
[9] K. I. Noor, On certain classes of meromorphic functions involving integral operators, J. Inequalities. Pure. Applied. Maths, 7(2006), 1-8.
[10] K. I. Noor, On subclasses of close-to-convex functions of higher order, Internat. J. Math. and Math Sci., 15(1992), 279-290.
[11] K. I. Noor, On new classes of integral operators, J. Nat. Geomet, 16(1999), 71-80.
[12] K. I. Noor and M. A. Noor, On Integral operators, J. Math. Anal. Appl., 238(1999), 341-352.
[13] K. Padmanabhan and R. Parvatham, Properties of a class of functions with bounded boundary rotation, Ann. Polon. Math., 31(1975), 311-323.
[14] B. Pinchuk, Functions with bounded boundary rotation, Isr. J. Math., 10(1971), 7-16.
[15] S. Ruschewyh, New criteria for univalent functions, Amer. Math. Soc., 49(1975), 109-115.
[16] C. Selvaraj and K. R. Karthikeyan, Some inclusion relationships for certain subclasses of meromorphic functions associated with a family of integral operators, Acta Math. Univ. Comenianae, Vol. LXXVIII, 2(2009), 245-254.
[17] S.-M. Yuan, Z.-M. Liu and H. M. Srivastava, Some inclusion relationships and integral preserving properties of certain subclasses of meromorphic functions associated with a family of integral operators, J. Math. Anal., 337(1)(2008), 505-515.

