• Title/Summary/Keyword: Hypergeometric Function

Search Result 241, Processing Time 0.022 seconds

A NOTE ON TWO NEW CLOSED-FORM EVALUATIONS OF THE GENERALIZED HYPERGEOMETRIC FUNCTION 5F4 WITH ARGUMENT $\frac{1}{256}$

  • B. R. Srivatsa Kumar;Dongkyu Lim;Arjun K. Rathie
    • The Pure and Applied Mathematics
    • /
    • v.30 no.2
    • /
    • pp.131-138
    • /
    • 2023
  • The aim of this note is to provide two new and interesting closed-form evaluations of the generalized hypergeometric function 5F4 with argument $\frac{1}{256}$. This is achieved by means of separating a generalized hypergeometric function into even and odd components together with the use of two known sums (one each) involving reciprocals of binomial coefficients obtained earlier by Trif and Sprugnoli. In the end, the results are written in terms of two interesting combinatorial identities.

INTEGRAL REPRESENTATION OF SOME BASIC K-HYPERGEOMETRIC FUNCTIONS

  • ALI, ASAD;IQBAL, MUHAMMAD ZAFAR
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.1_2
    • /
    • pp.205-213
    • /
    • 2022
  • In this paper we give a simple and direct proof of an Euler integral representation for a special class of q+1Fq,k k-hypergeometric functions for q ≥ 2. The values of certain 3F2,k and 4F3,k functions at $x=\frac{1}{k}$, some of which can be derived using other methods. We may conclude that for k = 1 the results are reduced to [3].

ANALYSIS OF AN EXTENDED WHITTAKER FUNCTION AND ITS PROPERTIES

  • Nabiullah Khan;Saddam Husain;M. Iqbal Khan
    • Honam Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.184-197
    • /
    • 2023
  • For the numerous uses and significance of the Whittaker function in the diverse research areas of mathematical sciences and engineering sciences, This paper aims to introduce an extension of the Whittaker function by using a new extended confluent hypergeometric function of the first kind in terms of the Mittag-Leffler function. We also drive various valuable results like integral representation, integral transform and derivative formula. Further, we also analyze specific known results as a particular case of the main result.

ANOTHER TRANSFORMATION OF THE GENERALIZED HYPERGEOMETRIC SERIES

  • Cho, Young-Joon;Lee, Keum-Sik;Seo, Tae-Young;Choi, June-Sang
    • East Asian mathematical journal
    • /
    • v.16 no.1
    • /
    • pp.81-87
    • /
    • 2000
  • Bose and Mitra obtained certain interesting tansformations of the generalized hypergeometric series by using some known summation formulas and employing suitable contour integrations in complex function theory. The authors aim at providing another transformation of the generalized hypergeometric series by making use of the technique as those of Bose and Mitra and a known summation formula, which Bose and Mitra did not use, for the Gaussian hypergeometric series.

  • PDF

AN EXTENSION OF THE BETA FUNCTION EXPRESSED AS A COMBINATION OF CONFLUENT HYPERGEOMETRIC FUNCTIONS

  • Marfaing, Olivier
    • Honam Mathematical Journal
    • /
    • v.43 no.2
    • /
    • pp.183-197
    • /
    • 2021
  • Recently several authors have extended the Beta function by using its integral representation. However, in many cases no expression of these extended functions in terms of classic special functions is known. In the present paper, we introduce a further extension by defining a family of functions Gr,s : ℝ*+ → ℂ, with r, s ∈ ℂ and ℜ(r) > 0. For given r, s, we prove that this function satisfies a second-order linear differential equation with rational coefficients. Solving this ODE, we express Gr,s as a combination of confluent hypergeometric functions. From this we deduce a new integral relation satisfied by Tricomi's function. We then investigate additional specific properties of Gr,1 which take the form of new non trivial integral relations involving exponential and error functions. We discuss the connection between Gr,1 and Stokes' first problem (or Rayleigh problem) in fluid mechanics which consists in determining the flow created by the movement of an infinitely long plate. For $r{\in}{\frac{1}{2}}{\mathbb{N}}^*$, we find additional relations between Gr,1 and Hermite polynomials. In view of these results, we believe the family of extended beta functions Gr,s will find further applications in two directions: (i) for improving our knowledge of confluent hypergeometric functions and Tricomi's function, (ii) and for engineering and physics problems.

(p, q)-EXTENSION OF THE WHITTAKER FUNCTION AND ITS CERTAIN PROPERTIES

  • Dar, Showkat Ahmad;Shadab, Mohd
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.619-630
    • /
    • 2018
  • In this paper, we obtain a (p, q)-extension of the Whittaker function $M_{k,{\mu}}(z)$ together with its integral representations, by using the extended confluent hypergeometric function of the first kind ${\Phi}_{p,q}(b;c;z)$ [recently extended by J. Choi]. Also, we give some of its main properties, namely the summation formula, a transformation formula, a Mellin transform, a differential formula and inequalities. In addition, our extension on Whittaker function finds interesting connection with the Laguerre polynomials.

FRACTIONAL CALCULUS OPERATORS OF THE PRODUCT OF GENERALIZED MODIFIED BESSEL FUNCTION OF THE SECOND TYPE

  • Agarwal, Ritu;Kumar, Naveen;Parmar, Rakesh Kumar;Purohit, Sunil Dutt
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.557-573
    • /
    • 2021
  • In this present paper, we consider four integrals and differentials containing the Gauss' hypergeometric 2F1(x) function in the kernels, which extend the classical Riemann-Liouville (R-L) and Erdélyi-Kober (E-K) fractional integral and differential operators. Formulas (images) for compositions of such generalized fractional integrals and differential constructions with the n-times product of the generalized modified Bessel function of the second type are established. The results are obtained in terms of the generalized Lauricella function or Srivastava-Daoust hypergeometric function. Equivalent assertions for the Riemann-Liouville (R-L) and Erdélyi-Kober (E-K) fractional integral and differential are also deduced.

FUNCTIONAL RELATIONS INVOLVING SARAN'S HYPERGEOMETRIC FUNCTIONS FE AND F(3)

  • Kim, Yong-Sup;Hasanov, Anvar
    • The Pure and Applied Mathematics
    • /
    • v.19 no.1
    • /
    • pp.43-57
    • /
    • 2012
  • By simply splitting the hypergeometric Saran function $F_E$ into eight parts, we show how some useful and generalized relations between $F_E$ and Srivas- tava's hypergeometric function $F^{(3)}$ can be obtained. These main results are shown to be specialized to yield certain relations between functions $_0F_1$, $_1F_1$, $_0F_3$, ${\Psi}_2$, and their products including different combinations with different values of parameters and signs of variables.

TURÁN-TYPE INEQUALITIES FOR GAUSS AND CONFLUENT HYPERGEOMETRIC FUNCTIONS VIA CAUCHY-BUNYAKOVSKY-SCHWARZ INEQUALITY

  • Bhandari, Piyush Kumar;Bissu, Sushil Kumar
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1285-1301
    • /
    • 2018
  • This paper is devoted to the study of $Tur{\acute{a}}n$-type inequalities for some well-known special functions such as Gauss hypergeometric functions, generalized complete elliptic integrals and confluent hypergeometric functions which are derived by using a new form of the Cauchy-Bunyakovsky-Schwarz inequality. We also apply these inequalities for some sample of interest such as incomplete beta function, incomplete gamma function, elliptic integrals and modified Bessel functions to obtain their corresponding $Tur{\acute{a}}n$-type inequalities.

DECOMPOSITION FORMULAS AND INTEGRAL REPRESENTATIONS FOR SOME EXTON HYPERGEOMETRIC FUNCTIONS

  • Choi, Junesang;Hasanov, Anvar;Turaev, Mamasali
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.745-758
    • /
    • 2011
  • Generalizing the Burchnall-Chaundy operator method, the authors are aiming at presenting certain decomposition formulas for the chosen six Exton functions expressed in terms of Appell's functions $F_3$ and $F_4$, Horn's functions $H_3$ and $H_4$, and Gauss's hypergeometric function F. We also give some integral representations for the Exton functions $X_i$ (i = 6, 8, 14) each of whose kernels contains the Horn's function $H_4$.