DOI QR코드

DOI QR Code

ANALYSIS OF AN EXTENDED WHITTAKER FUNCTION AND ITS PROPERTIES

  • Nabiullah Khan (Department of Applied Mathematics, Aligarh Muslim University, Faculty of Engineering and Technology) ;
  • Saddam Husain (Department of Applied Mathematics, Aligarh Muslim University, Faculty of Engineering and Technology) ;
  • M. Iqbal Khan (Department of Applied Mathematics, Aligarh Muslim University, Faculty of Engineering and Technology)
  • Received : 2022.01.15
  • Accepted : 2023.01.16
  • Published : 2023.06.01

Abstract

For the numerous uses and significance of the Whittaker function in the diverse research areas of mathematical sciences and engineering sciences, This paper aims to introduce an extension of the Whittaker function by using a new extended confluent hypergeometric function of the first kind in terms of the Mittag-Leffler function. We also drive various valuable results like integral representation, integral transform and derivative formula. Further, we also analyze specific known results as a particular case of the main result.

Keywords

References

  1. M. Ali, M. Ghayasuddin, and N. U. Khan Certain new extension of Whittaker function and its properties, Indian J. Math. 2 (2010), no. 1, 81-96. 
  2. G. E. Andrews, R. Askey, and R. Roy, Special Functions, Cambridge University Press, Cambridge (1999). 
  3. M.A. Chaudhry, A. Qadir, M. Rafique, and S. M. Zubair, Extension of Euler's beta function, J. Comput. Appl. Math. 78 (1997), 19-32.  https://doi.org/10.1016/S0377-0427(96)00102-1
  4. M.A. Chaudhry, A. Qadir, H. M. Srivastava, and R.B. Paris, Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput. 159 (2004), 589-602. 
  5. A. Erdelyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Tables of Integral Transform, Vol I, McGraw-hill, New York, 1954. 
  6. R. Gorenflo, A. A. Kilbas, F. Mainardi, and S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer, 2014. 
  7. N. U. Khan and M. Ghayasuddin, A note on generalized extended Whittaker function, Honam Math. J. 38 (2016) , no. 2, 325-335.  https://doi.org/10.5831/HMJ.2016.38.2.325
  8. N.U. Khan, T. Usman, and M. Ghayasuddin, A new generalization of confluent hypergeometric function and Whittaker function, Bol. da Soc. Parana. de Mat. 38 (2020), no. 2, 9-26.  https://doi.org/10.5269/bspm.v38i2.37578
  9. N. U. Khan and S. Husain, A note on extended beta function inolving generalized Mittag-Leffler function and its applications, TWMS J. App. and Eng. Math. 12 (2022), no. 1, 71-82. 
  10. N. Khan, S. Husain, T. Usman, and S. Araci, Results concerning the analysis of multi-index Whittaker function, J. Math. 2022 (2022), Article ID 3828104. 
  11. D. M. Lee, A. K. Rathie, R. K. Parmar, and Y. S. Kim, Generalization of extended beta function, hypergeometric and confluent hypergeometric functions, Honam Math. J. 33 (2011), no. 2, 187-206.  https://doi.org/10.5831/HMJ.2011.33.2.187
  12. G. M. Mittag-Leffler, Sur la nouvelle function Eα(x), C. R. Acad. Sci. Paris 137 (1903), 554-558. 
  13. G. M. Mittag-Leffler, Sur la representation analytique d'une branche uniforme d'une fonction monogene, Acta Math. 29 (1905), 101-181.  https://doi.org/10.1007/BF02403200
  14. D. K. Nagar, R. A. M. Vasquez, and A. K. Gupta, Properties of extended Whittaker function, Prog. Math. 6 (2013), no. 2, 70-80. 
  15. E. Ozergin, M. A. Ozarslan, and A. Altin, Extension of gamma, beta and hypergeometric function, Journal of comp. an Appl. Math. 235 (2011), no. 16, 4601-4610.  https://doi.org/10.1016/j.cam.2010.04.019
  16. E. D. Rainville, Special Functions, The Macmillan Company, New York, 1960. 
  17. V. Sahai and A. Verma, Recursion formulas for q-hypergeometric and q-appell series, Commun. Korean Math. Soc. 33 (2018), no. 1, 207-236. 
  18. M. Shadab, S. Jabee and J. Choi, An extended beta function and its applications, Far East J. Math. Sci. 103 (2018), no. 1, 235-251.  https://doi.org/10.17654/MS103010235
  19. H. M. Srivastava and H. L. Manocha, A tretise on generating functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, 1984. 
  20. H. M. Srivastava and Per Wennerberg Karlsson, Multiple Gaussian Hypergeometric Series, E. Horwood, 1985. 
  21. A. Verma and S. Yadav, Recursion formulas for Srivastava's general triple q-hypergeometric series, Afr. Mat. 31 (2020), 869-885.  https://doi.org/10.1007/s13370-020-00766-5
  22. E. T. Whittaker, An expression of certain known functions as generalized hypergeometric functions, Bull. Amer. Math. Soc. 10 (1903), no. 3, 125-134.  https://doi.org/10.1090/S0002-9904-1903-01077-5
  23. E. T. Whittaker and G. N. Watson, A course of mordern analysis, Reprint of the 4th ed., Cambridge Mathematical Library, Cambridge, Cambridge University Press, 1990.