• 제목/요약/키워드: Hyperelliptic Curve

검색결과 26건 처리시간 0.024초

Performance Study of genus 3 Hyperelliptic Curve Cryptosystem

  • Gupta, Daya;De, Asok;Chatterjee, Kakali
    • Journal of Information Processing Systems
    • /
    • 제8권1호
    • /
    • pp.145-158
    • /
    • 2012
  • Hyperelliptic Curve Cryptosystem (HECC) is well suited for all kinds of embedded processor architectures, where resources such as storage, time, or power are constrained due to short operand sizes. We can construct genus 3 HECC on 54-bit finite fields in order to achieve the same security level as 160-bit ECC or 1024-bit RSA due to the algebraic structure of Hyperelliptic Curve. This paper explores various possible attacks to the discrete logarithm in the Jacobian of a Hyperelliptic Curve (HEC) and addition and doubling of the divisor using explicit formula to speed up the scalar multiplication. Our aim is to develop a cryptosystem that can sign and authenticate documents and encrypt / decrypt messages efficiently for constrained devices in wireless networks. The performance of our proposed cryptosystem is comparable with that of ECC and the security analysis shows that it can resist the major attacks in wireless networks.

JACOBIAN VARIETIES OF HYPERELLIPTIC CURVES OVER FINITE FIELDS WITH THE FORMAL STRUCTURE OF THE MIXED TYPE

  • Sohn, Gyoyong
    • East Asian mathematical journal
    • /
    • 제37권5호
    • /
    • pp.585-590
    • /
    • 2021
  • This paper consider the Jacobian variety of a hyperelliptic curve over a finite field with the formal structure of the mixed type. We present the Newton polygon of the characteristic polynomial of the Frobenius endomorphism of the Jacobian variety. It gives an useful tool for finding the local decomposition of the Jacobian variety into isotypic components.

AVERAGE VALUES ON THE JACOBIAN VARIETY OF A HYPERELLIPTIC CURVE

  • Chung, Jiman;Im, Bo-Hae
    • 대한수학회보
    • /
    • 제56권2호
    • /
    • pp.333-349
    • /
    • 2019
  • We give explicitly an average value formula under the multiplication-by-2 map for the x-coordinates of the 2-division points D on the Jacobian variety J(C) of a hyperelliptic curve C with genus g if $2D{\equiv}2P-2{\infty}$ (mod Pic(C)) for $P=(x_P,y_P){\in}C$ with $y_P{\neq}0$. Moreover, if g = 2, we give a more explicit formula for D such that $2D{\equiv}P-{\infty}$ (mod Pic(C)).

COMPUTING THE NUMBER OF POINTS ON GENUS 3 HYPERELLIPTIC CURVES OF TYPE Y2 = X7 + aX OVER FINITE PRIME FIELDS

  • Sohn, Gyoyong
    • Journal of applied mathematics & informatics
    • /
    • 제32권1_2호
    • /
    • pp.17-26
    • /
    • 2014
  • In this paper, we present an algorithm for computing the number of points on the Jacobian varieties of genus 3 hyperelliptic curves of type $y^2=x^7+ax$ over finite prime fields. The problem of determining the group order of the Jacobian varieties of algebraic curves defined over finite fields is important not only arithmetic geometry but also curve-based cryptosystems in order to find a secure curve. Based on this, we provide the explicit formula of the characteristic polynomial of the Frobenius endomorphism of the Jacobian variety of hyperelliptic curve $y^2=x^7+ax$ over a finite field $\mathbb{F}_p$ with $p{\equiv}1$ modulo 12. Moreover, we also introduce some implementation results by using our algorithm.

Flexible Prime-Field Genus 2 Hyperelliptic Curve Cryptography Processor with Low Power Consumption and Uniform Power Draw

  • Ahmadi, Hamid-Reza;Afzali-Kusha, Ali;Pedram, Massoud;Mosaffa, Mahdi
    • ETRI Journal
    • /
    • 제37권1호
    • /
    • pp.107-117
    • /
    • 2015
  • This paper presents an energy-efficient (low power) prime-field hyperelliptic curve cryptography (HECC) processor with uniform power draw. The HECC processor performs divisor scalar multiplication on the Jacobian of genus 2 hyperelliptic curves defined over prime fields for arbitrary field and curve parameters. It supports the most frequent case of divisor doubling and addition. The optimized implementation, which is synthesized in a $0.13{\mu}m$ standard CMOS technology, performs an 81-bit divisor multiplication in 503 ms consuming only $6.55{\mu}J$ of energy (average power consumption is $12.76{\mu}W$). In addition, we present a technique to make the power consumption of the HECC processor more uniform and lower the peaks of its power consumption.

ISOMORPHISM CLASSES OF HYPERELLIPTIC CURVES OF GENUS 2 OVER F2n

  • Choi, Chun Soo;Rhee, Min Surp
    • 충청수학회지
    • /
    • 제15권2호
    • /
    • pp.1-12
    • /
    • 2003
  • L. H. Encinas, A. J. Menezes, and J. M. Masque in [2] proposed a classification of isomorphism classes of hyperelliptic curve of genus 2 over finite fields with characteristic different from 2 and 5. Y. Choie and D. Yun in [1] obtained for the number of isomorphic classes of hyperelliptic curves of genus 2 over $F_q$ using direct counting method. In this paper we will classify the isomorphism classes of hyperelliptic curves of genus 2 over $F_{2^n}$ for odd n, represented by an equation of the form $y^2+a_5y=x^5+a_8x+a_{10}(a_5{\neq}0)$.

  • PDF

ON THE SECURITY OF CERTAIN HYPERELLIPTIC CURVES

  • KIM, INSUK;JUN, SUNGTAE
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제4권1호
    • /
    • pp.23-28
    • /
    • 2000
  • We compute the order of jacobian groups of hyperelliptic curves on a finite field of characteristic 3 and we determine which curves are secure against known attacks.

  • PDF

ISOMORPHISM CLASSES OF HYPERELLIPTIC CURVES OF GENUS 2 OVER $F_{2_}{N}$ FOR EVEN n

  • Park, Chun-Soo;Rhee, Min-Surp
    • Journal of applied mathematics & informatics
    • /
    • 제13권1_2호
    • /
    • pp.413-424
    • /
    • 2003
  • L. H Encinas, A. J. Menezes and J. M. Masque in [3] proposed a classification of isomorphism classes of hyperelliptic curve of genus 2 over finite fields with characteristic different from 2 and 5. Y. Choie and D. Yun in [2] obtained the number of isomorphic classes of hyperelliptic curves of genus 2 over $F_{2-}$ using direct counting method. We have obtained isomorphism classes of hyperelliptic curves of genus 2 over $F_{2n}$ for odd n, represented by an equation of the form $y^2$ + $a_{5}$ y = $x^{5}$ + $a_{8}$ x + $a_{10}$ ( $a_{5}$ $\neq$0) [1]. In this paper we characterize hyperelliptic curves of genus 2 over $F_{2n}$ for even n, represented by an equation of the form $y^2$ + $a_{5}$ y = $x^{5}$ + $a_{5}$ x + $a_{10}$ ( $a_{5}$ $\neq$0).>0).

EXTENDING HYPERELLIPTIC K3 SURFACES, AND GODEAUX SURFACES WITH π1 = ℤ/2

  • Coughlan, Stephen
    • 대한수학회지
    • /
    • 제53권4호
    • /
    • pp.869-893
    • /
    • 2016
  • We construct the extension of a hyperelliptic K3 surface to a Fano 6-fold with extraordinary properties in moduli. This leads us to a family of surfaces of general type with $p_g=1$, q = 0, $K^2=2$ and hyperelliptic canonical curve, each of which is a weighted complete inter-section inside a Fano 6-fold. Finally, we use these hyperelliptic surfaces to determine an 8-parameter family of Godeaux surfaces with ${\pi}_1={\mathbb{Z}}/2$.