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COMPUTING THE NUMBER OF POINTS ON GENUS 3

HYPERELLIPTIC CURVES OF TYPE Y 2 = X7 + aX OVER

FINITE PRIME FIELDS†

GYOYONG SOHN

Abstract. In this paper, we present an algorithm for computing the num-
ber of points on the Jacobian varieties of genus 3 hyperelliptic curves of

type y2 = x7 + ax over finite prime fields. The problem of determining
the group order of the Jacobian varieties of algebraic curves defined over
finite fields is important not only arithmetic geometry but also curve-based

cryptosystems in order to find a secure curve. Based on this, we provide
the explicit formula of the characteristic polynomial of the Frobenius en-
domorphism of the Jacobian variety of hyperelliptic curve y2 = x7 + ax
over a finite field Fp with p ≡ 1 modulo 12. Moreover, we also introduce

some implementation results by using our algorithm.
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1. Introduction

In recent years, computing the number of points on algebraic curves over finite
fields is an important task for public key cryptography. In order to generate
curves suitable for cryptosystems, we must determine the order of Jacobian of a
curve over a finite field. It is required that the order of Jacobian is a prime or a
small cofactor times a prime.

For elliptic curves, Schoof gave a polynomial time algorithm [7] and there are
its improved algorithm for the time and space complexity [1, 5, 12]. Gaudry and
Harley extended its algorithm to genus 2 curve [4]. For higher genus curves, there
are several efficient counting points algorithms of Jacobian varieties [13, 14, 15].
In [9], authors suggest a fast point counting algorithm for genus 2 hyperelliptic
curves of type y2 = x5+ax over finite prime fields. Also, there are many efficient
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algorithms for algebraic varieties over finite fields of small characteristic, which
is so called p-adic method [16, 17, 18]. Our approach follows l-adic method which
is more useful for algebraic curve over large field characteristic.

In this paper, we provide an algorithm for computing the orders of the Ja-
cobians on genus 3 hyperelliptic curves of type y2 = x7 + ax over finite prime
fields. In particular, by using baby-step giant-step algorithm, we determine the
order of the Jacobian of a curve defined over finite prime field with characteristic
greater than the 54-bit. We also provide the explicit formula of the characteristic
polynomial of the Frobenius endomorphism of the Jacobian of the hyperelliptic
curves y2 = x7 + ax over Fp with p ≡ 1 modulo 12. Furthermore, we present
additional computational results using our algorithm.

2. Basic Facts on Hyperelliptic Curves

Let Fq be a finite field of q = pn elements, where p is an odd prime. The
hyperelliptic curve C of genus g over Fq is given by

C : y2 = f(x),

where f(x) is a polynomial in Fq[x] of degree 2g + 1 without singular points.
We denote the Jacobian variety of a hyperelliptic curve C by JC . Then, JC(Fq)
is the group of Fq-rational points on JC . A semi-reduced divisor is a divisor
with k points and no two points in the opposite side. A reduced divisor is a
semi-reduced divisor of k ≤ g.

In [11], every semi-reduced divisor on JC(Fq) can be uniquely represented
by a pair of polynomials ⟨u(x), v(x)⟩, where u(x) =

∏
i(x − xi) is monic and

v(x) is unique polynomial such that deg v(x) < deg u(x), v(xP ) = yP for all
P = (xP , yP ) ∈ C(Fq) and u(x) divides f(x) − v(x)2. ⟨1, 0⟩ is the identity
element of the addition law. Cantor’s algorithm can be used to compute the
sum of two reduced divisors in JC(Fq).

We consider the hyperelliptic curves of genus 3 defined over finite fields Fq.
The characteristic polynomial χq(t) of the q-th power Frobenius endomorphism
of JC is given as follows:

χq(t) = t6 − s1t
5 + s2t

4 − s3t
3 + qs2t

2 − q2s1t+ q3,

where si ∈ Z. We also know that ♯JC(Fq) = χq(1). i.e.,

♯JC(Fq) = 1 + q3 − s1(1 + q2) + s2(1 + q)− s3. (1)

Let Mr = (qr +1)−Nr, where Nr is the number of Fqr -rational points on C for
r = 1, 2, 3. Then, we have

s1 = M1, s2 =
1

2
(M2

1 −M2), and s3 =
1

3
(M3 −

3

2
M2M1 +

1

2
M3

1 ) (2)

The following is a well-known inequality, the Hasse-Weil bound, that bounds
♯JC(Fq):

⌈(√q − 1)6⌉ ≤ ♯JC(Fq) ≤ ⌊(√q + 1)6⌋.
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Then, we have

|s1| ≤ 6
√
q, |s2| ≤ 15q, |s3| ≤ 20q

√
q. (3)

S. Haloui [19] presented the efficient bounds of the coefficients of characteristic
polynomial of genus 3 abelian varieties over finite fields.

Theorem 2.1 ([19]). Let χ(t) = t6 − s1t
5 + s2t

4 − s3t
3 + qs2t

2 − q2s1t+ q3 be a
polynomial with integer coefficients. Then χ(t) is a Weil polynomial if and only
if the following conditions hold

(1) |s1| ≤ 6
√
q,

(2) 4
√
q|s1| − 9q ≤ s2 ≤ s21

3 + 3q,

(3) − 2s31
27 + s1s2

3 + qs1 − 2
27 (s

2
1 − 3s2 + 9q)3/2 ≤ s3 ≤ − 2s31

27 + s1s2
3 + qs1 +

2
27 (s

2
1 − 3s2 + 9q)3/2,

(4) −2qs1 − 2
√
qs2 − 2q

√
q ≤ s3 ≤ −2qs1 + 2

√
qs2 + 2q

√
q.

3. Hasse-Witt matrix

In this section, we recall the definition of the Hasse-Witt matrix in the case
of hyperelliptic curves. It is a useful tool to compute the modulo characteristic
p of ♯JC(Fp). Yui’s made the following theorem [6].

Theorem 3.1. Let y2 = f(x) with deg f = 2g+1 be the equation of a genus g hy-
perelliptic curve. Denote by ci the coefficient of xi in the polynomial f(x)(p−1)/2.
Then the Hasse-Witt matrix is given by

H = (cip−j)1≤i,j≤g.

In [8], Manin showed that this matrix is related to the characteristic poly-
nomial of the Frobenius endomorphism modulo p. For a matrix H = (aij), let

H(p) denote the elements raised to the power p, i.e., (apij). Then, we have the
following theorem.

Theorem 3.2. Let C be a curve of genus g defined over a finite field Fpn . Let

H be the Hasse-Witt matrix of C and let Hπ = H ·Hp ·Hp2 · · ·Hpn−1

. Let κ(t)
be the characteristic polynomial of the matrix Hπ and χ(t) the characteristic
polynomial of the Frobenius endomorphism of the Jacobian of C. Then,

χ(t) ≡ (−1)gtgκ(t) (mod p).

4. The Characteristic Polynomial of C

In this section, we present the explicit formula of the characteristic polynomial
of the Frobenius endomorphism on hyperelliptic curves of type C : y2 = x7 + ax
over finite fields Fp with p ≡ 1 (mod 12), and show how to efficiently compute
the Hasse-Witt matrix of C. The below theorem is a tool used to compute the
Hasse-Witt matrix of C.
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Corollary 4.1 ([3]). If p = 12f + 1 = A2 + B2 (A ≡ 1 (mod 4), B ≡ 0 (mod
2)) is prime then(

6f

f

)
≡

{(
6f
3f

)
(mod p) if B ≡ 0 (mod 3),

−
(
6f
3f

)
(mod p) if A ≡ 0 (mod 3).

Proof. See Corollary 4.2.2 in [3]. �
Theorem 4.2 ([3]). Let p = 12f + 1 = A2 + B2 = x2 + 3y2 be a prime with
A ≡ 1 (mod 4), x ≡ 1 (mod 3). Then we have the following congruences modulo
p: (

6f

f

)
≡ 2θ2A,

where

θ2 =

{
1 if A ≡ 1, 2 (mod 3), B ≡ 0 (mod 3),

B2/A2 if A ≡ 0 (mod 3), B ≡ 1, 2 (mod 3).

Proof. See Theorem 15.1 in [3]. �
Theorem 4.3. Let C be a hyperelliptic curve defined by the equation y2 = x7+ax
over Fp with p ≡ 1 (mod 12) such that p = A2 + B2 (A ≡ 1 (mod 4), B ≡ 0
(mod 2)) and χ(t) the characteristic polynomial of the p-th power Frobenius
endomorphism of C. Then s1, s2 and s3 in χ(t) are given as follows:

1. if A ≡ 1, 2 (mod 3) and B ≡ 0 (mod 3), then

s1 ≡ 2Aa(p−1)/12(a(p−1)/3 + a(p−1)/6 + 1) (mod p),

s2 ≡ 4A2a(p−1)/3(a(p−1)/3 + a(p−1)/6 + 1) (mod p),

s3 ≡ 8A3a(9p−9)/12 (mod p).

2. if A ≡ 0 (mod 3) and B ≡ 1, 2 (mod 3), then

s1 ≡ 2
B2

A
a(p−1)/12(a(p−1)/3 − a(p−1)/6 + 1) (mod p),

s2 ≡ 4
B4

A2
a(p−1)/3(a(p−1)/3 − a(p−1)/6 − 1) (mod p),

s3 ≡ −8
B6

A3
a(9p−9)/12 (mod p).

Proof. First, we compute the entities cip−j of the Hasse-Witt matrix H of the
curve C. From Theorem 3.1, the entities cip−j are computed by an integer

k, 0 ≤ k ≤ (p − 1)/2, for ip − j = p − 1 + 3k from (x7 + ax)(p−1)/2 =∑(p−1)/2
k=0

( p−1
2
k

)
a(p−1)/2−kx(p−1)/2+6k. Since the characteristic p with p ≡ 1 (mod

12), the Hasse-Witt matrix is

H =

cp−1 0 0
0 c2p−2 0
0 0 c3p−3

 . (4)
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Then we have that cp−1 =
( p−1

2
p−1
12

)
a(5p−5)/12, c2p−2 =

( p−1
2

3p−3
12

)
a(3p−3)/12, and c3p−3 =( p−1

2
5p−5
12

)
a(p−1)/12. On the other hand, the each si of χ(t) has the following con-

gruence modulo p;

s1 ≡ cp−1 + c2p−2 + c3p−3 (mod p),

s2 ≡ cp−1c2p−2 + c2p−2c3p−3 + cp−1c3p−3 (mod p),

s3 ≡ cp−1c2p−2c3p−3 (mod p).

Let p = 12f + 1 be a prime. Then, since (p− 1)/2 + 6k = p− 1 for cp−1, we

have k = (p− 1)/12 = f and cp−1 =
(
6f
f

)
a5f . For c2p−2, since (p− 1)/2 + 6k =

2p − 2, we have k = (3p − 3)/12 = 3f and c2p−2 =
(
6f
3f

)
a3f . For c3p−3, since

(p − 1)/2 + 6k = 3p − 3, we have k = (5p − 5)/12 = 5f and c3p−3 =
(
6f
5f

)
a5f .

Hence, since
(
6f
5f

)
=

(
6f
f

)
, Theorem 4.2 and Corollary 4.1, we have the congruence

values modulo p for s1, s2 and s3. �

The equation of given curve gives us to some information about 2k-torsion
subgroups of the Jacobian variety.

Lemma 4.4. Let p be a prime number such that p ≡ 1 (mod 12) and C :
y2 = f(x) be a hyperelliptic curve over Fp where f(x) = x7 + ax. If f(x) splits

completely over Fp (i.e.,a(p−1)/6 = 1), then 64 divide ♯JC(Fp). If f(x) splits

into four factors over Fp (i.e, a(p−1)/3 = 1), then 8 divide ♯JC(Fp). Otherwise,
if f(x) splits into two factors of degree 3 and a factor of degree 1, or into two
factors of degree 6 and 1, then 2 divide ♯JC(Fp).

Proof. Since 12 divide p−1, there are exists a primitive 12-th root of unity, ζ12, in
Fp. The points on C with vanishing y-coordinates correspond to (1−ζ12)-torsion

points of the Jacobian. If f(x) splits completely over Fp (i.e., a(p−1)/6 = 1), then
JC [1 − ζ12] is defined over Fp. Hence, (Z/2Z)6 is a subgroup in JC(Fp) and 64
divide ♯JC(Fp). Moreover precisely, in this case, there exists an element b ∈ Fp

such that a = b6. Then we have

y2 = x7 + ax = x(x6 + b6)

= x(x− ζ312b)(x+ ζ312b)(x− ζ512b)(x+ ζ512b)(x− ζ712b)(x+ ζ712b).

If f(x) splits four factors over Fp (i.e., a(p−1)/3 = 1), then the three (1− ζ12)-
torsion points arising from the roots of f(x) are linearly independent. Hence
(Z/2Z)3 ≤ JC(Fp) and 8 divides ♯JC(Fp). Moreover, in this case, there exists
an element b ∈ Fp such that a = b3. Then we have

y2 = x7 + ax = x(x6 + b3) = x(x2 + b)(x2 + ζ512b)(x
2 + ζ912b).

Otherwise, JC(Fp) contains one non-trivial (1− ζ12)-torsion point. Moreover,
in this case, there exists an element b ∈ Fp such that a = b2. Then we have that

y2 = x7 + ax = x(x6 + b2) = x(x3 + b)(x3 − b), and y2 = x(x6 + a).
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�

Throughout this paper, we consider the case of the prime p = A2 + B2 with
A ≡ 1 (mod 4) and B ≡ 0 (mod 2).

Theorem 4.5. Let C be a hyperelliptic curve of the form y2 = x7 + ax defined
over a finite field Fp with p ≡ 1 (mod 12), p = A2+B2. Then the characteristic
polynomial χ(t) is as follows:

1. If a(p−1)/12 = 1, then χ(t) = (t2 − 2At+ p)3.
2. If a(p−1)/12 = −1 and χ(t) = (t2 + 2At+ p)3.

where A ≡ 1, 2 (mod 3) and B ≡ 0 (mod 3).

3. If a(p−1)/12 = 1, then χ(t) = (t2 − 2B2

A t+ p)(t2 + 2B2

A t+ p)2.

4. If a(p−1)/12 = −1, then χ(t) = (t2 + 2B2

A t+ p)(t2 − 2B2

A t+ p)2.

where A ≡ 0 (mod 3) and B ≡ 1, 2 (mod 3).

Proof. For the case (1), from a(p−1)/12 = 1 and Theorem 4.3, we have s1 ≡ 6A
(mod p), s2 ≡ 12A2 (mod p), and s3 ≡ 8A3 (mod p). By the Definition of A,
A2 < p and hence 0 < |6A| < 6

√
p. If p > 37, then s1 is uniquely determined by

Hasse-Witt matrix. Hence we have that s1 = 6A.
Denote s2 = mp+12A2 form ∈ Z. Since 0 < 12A2 < 12p and ⌈4√p|s1|−9p⌉ ≤

s2 ≤ ⌊s21/3 + 3p⌋, m is satisfied in −9 ≤ m ≤ 3. Now we determine the value
m. We know that χ(t) splits into three factors hi(x) of degree 2, for i = 1, 2, 3.
In particular, let πi be a complex roots of χ(t) in Z[t] for i = 1, 2, 3, and πi its
complex conjugate. We denote λi = πi + πi for i = 1, 2, 3. Then we have that
s1 = λ1+λ2+λ3, s2 = 3p+λ1λ2+λ2λ3+λ3λ1, and s3 = 2ps1+λ1λ2λ3. Since
λi < 2

√
p and A <

√
p, we thus have m = 3.

We denote s3 = m̃p+8A3 for m̃ ∈ Z. Since
∏

λi < 8p
√
p, we have m′ = 12A.

Then the characteristic polynomial χ(t) is

χ(t) = t6 − 6At5 + (12A2 + 3p)t4 − (12Ap+ 8A3)t3 + p(3p+ 12A2)t2 − p2(6A)t+ p3,

= (t2 − 2At+ p)3.

For the case (3), we have that s1 ≡ 2B2/A (mod p), s2 = −4B4/A2 (mod p),
and s3 ≡ −8B6/A3 (mod p). Following as the above way, the characteristic
polynomial χ(t) is

χ(t) = t6 + 2
B2

A
t5 + (3p− 4

B4

A2
)t4 + (4p

B2

A
− 8

B6

A3
)t3 + p(3p− 4

B4

A2
)t2 − 2p2

B2

A
t− p3

= (t2 − 2
B2

A
t+ p)(t2 − B2

A
t+ p)2.

For the case (2),(4), we can derive the χ(t) in the same way. �

Theorem 4.6. Let C be a hyperelliptic curve of the form y2 = x7 + ax defined
over a finite field Fp. If a(p−1)/6 = −1 (i.e, a(p−1)/3 = 1) and A ≡ 1, 2 (mod 3)
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and B ≡ 0 (mod 3), then the characteristic polynomial χ(t) has the form of the
following as

χ(t) = t6 − c1t
5 + c2t

4 − c3t
3 + pc2t

2 − p2c1t+ p3.

where c1 is 2Aa(p−1)/12 or −p + 2Aa(p−1)/12, c2 = mp + 4A2 for −1 ≤ m ≤ 2,
and c3 is an integer with c3 ≡ 0 (mod 2) for |c3| ≤ 20p

√
p.

Proof. From a(p−1)/6 = −1 and Theorem 4.3, we have that s1 ≡ 2Aa(p−1)/12

(mod p), s2 ≡ 4A2 (mod p) and s3 ≡ 8A3a9(p−1)/12 (mod p). Since Hasse-
Weil bound of s1 and A <

√
p, the coefficient s1 only have 2Aa(p−1)/12 or

−p+ 2Aa(p−1)/12.
Let s2 = mp+ 4A2 for m ∈ Z. From the sharp bound of s2 in Theorem 2.1,

−1 ≤ m ≤ 2. For s3 = m′p + 8A3a9(p−1)/12, m′ ∈ Z, we have s3 ≡ 0 (mod 2)
since s1 ≡ 0 (mod 2) and ♯JC(Fp) ≡ 0 (mod 2). �

Theorem 4.7. Let C be a hyperelliptic curve of the form y2 = x7 + ax defined
over a finite field Fp with p ≡ 1 (mod 12). Assume that A ≡ 1 (mod 4) and

A ≡ 1, 2 (mod 3). If a(p−1)/3 ̸= 1 and f(x) splits three factors, then the χ(t) has
the following form

χ(t) = t6 − c3t
3 + p3.

where c3 is an integer for |c3| ≤ 2p
√
p and c3 ≡ 0 (mod 2).

Proof. In this case, the prime satisfies p = A2 + B2 where A ≡ 1, 5 (mod 12)
and B ≡ 0 (mod 6). We have a(p−1)/3 + a(p−1)/6 + 1 = 0. Then s1 ≡ 0 (mod p)
and N1 = ♯C(Fp) = p+1. Hence s1 = 0. Since N2 = ♯C(Fp2) = p2 +1, we have
s2 = 0.

For the value s3, we denote s3 = mp+8A3a9(p−1)/12. From the bounds of s3
in theorem 2.1, we have |m| ≤ 2

√
q. Since ♯JC(Fp) ≡ 0 (mod 2),

χ(1) = 1 + p3 − c3 ≡ 0− c3 ≡ 0 (mod 2).

Then we have c3 ≡ 0 (mod 2) for |c3| ≤ [2p
√
p] from Theorem 2.1 . Hence we

have conclusion. �

5. Implementation details

5.1. BSGS algorithm. Now, we show how to determine the order of the
Jacobian of a hyperelliptic curve using the BSGS algorithm. We denote by Li

(Ui) the lower (upper) bound of si for i = 1, 2, 3 in (3). According to Theorem
3.2, we denote that for i = 1, 2, 3

si = s′i + tip, (2)

with s′i, ti ∈ Z (0 ≤ s′i < p). Then each ti is bounded by

⌈Li/p⌉ ≤ ti ≤ ⌊Ui/p⌋.
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We substitute (2) into (1) and denote M = 1+ p3 − s′1(1 + p2) + s′2(1 + p)− s′3.
Then, the order of the Jacobian follows the equation

♯JC(Fp) = M − t1p(1 + p2) + t2p(1 + p)− t3p. (3)

We should determine the values (t1, t2, t3) in order to get ♯JC(Fp). Assume that
N is a positive integer(to be specified). Let u and v be integers such that

t3 = u+ vN, 0 ≤ u < N. (4)

Then, the boundary for v is

⌈L3/pN⌉ ≤ v ≤ ⌊U3/pN⌋.
By substituting (4) into (3), we have

♯JC(Fp) = M − t1p(1 + p2) + t2p(1 + p)− up− vNp.

Hence, ♯JC(Fp) can be computed by finding the 4-tuple (t1, t2, u, v) such that

(M − t1p(1 + p2) + t2p(1 + p)− up)D = (vNp)D, (5)

for all D ∈ JC(Fp) for the above each ranges. We search for a collision between
the lhs and the rhs of (5) in the corresponding ranges. Moreover, we choose

N =
√
23U1U2U3/p3.

Thus the algorithm require the computation of O(N) point multiples.

5.2. Speeding up algorithm. In this section, we discuss the some technique to
speed up the algorithm during its implementation. First, we use the Cornacchia’s
algorithm in order to compute the coefficients s′i in (2) (see [10]). Then we can
be easily calculated the binomial coefficients. Moreover, since |s1| ≤ 6

√
p, if

p > 37, then s1 is uniquely determined by sum of cp−1, c2p−2 and c3p−3.
In [2], Gonda et. al. provide the efficient arithmetic on Jacobian of genus 3

hyperelliptic curves over a finite field. Using this method, the addition operation
in a Jacobian can be computed by performing 70 multiplications and 1 inver-
sions and 113 additions. The doubling can be obtained as 71 multiplications, 1
inversion and 107 additions.

In (5) of section 5.1, the precomputation of p and the addition of a divisor pN
times are needed, and an double-and-add method is used for these operations.
When we search for a collision between them, the same divisors are repeatedly
computed. So, we store them at first and subsequently execute the comparison
test. Two divisors identical and therefore, their chord are the same. Hence, we
can limit the boundary to 0 ≤ k ≤ ⌊U3/N⌋ and then avoid the computation for
the inversion of a divisor.

Now, we consider an efficient value N for the case of Theorem 4.7. We let
c3 = u + vN with 0 ≤ u < N and |v| ≤ (2

√
p)/N . For the v, there are 4

√
p/N

choices, and for u there are N choices. We also set the N as N =
√
2
√
p. In (2)

of Theorem 4.6, the s1 and s2 are easily determined. We similarly set the N as
N =

√
20

√
p. Therefore, the expected running time of our algorithm is O(p

1
4 ).
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6. Computational results

In this section, we present our experimental results. We implemented our
algorithm on a Pentium 2.13 GHz computer with less than 2 GB memory using
Shoup’s NTL library.

Example 6.1. Let p = 12970096625951449 be a 54-bit prime and let curve C
over Fp be defined by

C : y2 = x7 + 12345601677x.

We compute the group order of the Jacobian:

2181873855370536167845330488122786358604287858890

The number of the Jacobian is of 160 bits and the total time is 1882 s.

Example 6.2. Let p = 26144785074025909 be a 55-bit prime and let C be the
curve defined by C : y2 = x7 + 4857394849x. The group order of the Jacobian
is given by:

17871262257190705398953923111239719349017049815284

The number of the Jacobian is of 163 bits and the total time is 259 s.

Table 1 has the implementation results for Jacobians with a quasiprime factor
greater than 160 bits.

7. Conclusions

In this paper, we have presented an algorithm for computing the orders of the
Jacobian varieties of genus 3 hyperelliptic curves defined by y2 = x7 + ax over
a finite prime field. By using the baby-step giant-step method, we determined
the order of the Jacobian of a curve defined over a finite prime field bigger than
55 bit. Moreover, we also provided the explicit formula of the characteristic
polynomial of the Frobenius endomorphism of the Jacobian of the hyperelliptic
curves y2 = x7+ax over Fp with p ≡ 1 modulo 12. Finally, we verified usefulness
of the our algorithm by the simple examples.
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