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ON THE SECURITY OF CERTAIN HYPERELLIPTIC CURVES

Insuk KiM, SUNGTAE JUN

ABSTRACT. We compute the order of jacobian groups of hyperelliptic curves on a finite
field of characteristic 3 and we determine which curves are secure against known attacks.

1. INTRODUCTION

As a source of finite abelian groups suitable for cryptographic discrete logarithm
problems, elliptic curves have been studied. A practical advantage of elliptic curve
cryptosystems is that they can be constructed over a smaller definition field compared
to the conventional discrete-log based cryptosystems and to RSA cryptosystems. An-
other source of finite abelian groups is the jacobians of hyperelliptic curves defined over
finite fields [4]. Since there is no known practical advantage of hyperelliptic cryptosys-
tems compared to elliptic cryptosystems or RSA, it is worthwhile to study hyperelliptic
cryptosystems compared to other cryptosystems and to design hyperelliptic cryptosys-
tems secure against known attack including Frey-Riick-method [2].

In [3], Koblitz has studied the jacobians of hyperelliptic curves v? + v = u29+1 over
a field of characteristic 2 and found the induced hyperelliptic cryptosystems secure
against three known attacks. First, Shank’s baby step and giant step method and
Pohlig-Hellman method [5]. Second, Frey’s generalization of MOV attack [2]. Third,
Adelman-DeMarrais- Hwang method of subexponential time algorithm for discrete
logarithm over a rational subgroup of the jacobian of large genus of hyperelliptic curve
over a finite field [1]. In [4], Koblitz has computed the number of elements in the
jacobian groups of hyperelliptic curves v? + v = 42971 over a field of characteristic 2
and found that several curves were good for a secure cryptosystem. Recently, Sakai,
Sakurai and Ishizuka studied hyperelliptic curves of the form v? = f(u) where the
coefficients of f(u) were 1 or 0 over a field of characteristic 2, 3, 5 and 7 [7] and they
design a hyperelliptic curve cryptosystem.

In this paper, we will compute the order of jacobians of several hyperelliptic curves
of genus 2 over a finite field of characteristic 3, which are not treated in [7], and we
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check out which curves are good for a secure cryptosystem. Hence this paper does not
contain any theoretical new facts, however hyperelliptic curves we study here give a
good source for designing a cryptosystem.

2. HYPERELLIPTIC CURVE
2.1. Throughout this chapter, let F be a field and F its algebraic closure.

DEFINITION 2.1. A hyperelliptic curve of genus g over F(g > 1) is an equation of the
form

C: v+ h(u)v = f(u) in  Flu,v],

where h(u) € Flu] is a polynomial of degree at most g and f(u) € Flu] is a monic
polynomial of degree 29 + 1. This curve must be smooth at all points (z,y) € F x F
that satisfy the equation y? + h(x)y = f(z).

2.2 Jacobian groups.

Let C' be a hyperelliptic curve over a field F. A divisor D is a finite formal sum
of F-points D = >, miP; where m; € 7Z,P; € C. We define the degree of D to be
deg(D) = > m;. The divisors form an additive group D, in which the divisors of degree
0 form a subgroup D°. Let P be the principal divisors. Then the jacobian group is
defined as J(C;F) = D°/P.

The zeta function of a hyperelliptic curve is a basic tool in counting the order of a
jacobian. Let J be the jacobian of a hyperelliptic curve C' defined over F, and given
by the equation v? + h(u)v = f(u). Let F,» denote an extension field of F,, and let N,
denote the order of the finite abelian group J(F,-).

DEFINITION 2.2. Let C be a hyperelliptic curve defined over Fy, and let M, = #C(F,r),
the number of Fyr -points on C including the point at infinity for r > 1. The zeta func-
tion of C is the power series

Z(C[Fy;T) = exp(d>_ M, T"[r),
r>1

where exp(r) = e*.

THEOREM 2.1 (WEIL). Let C be a hyperelliptic curve of genus g defined over F,, and
let Z(C/Fy;T) be the zeta function of C. Then

(1)
P(T)

(1-T)(1—qT)’

Z(C/ENT) =
where P(T) is a polynomial of degree 2g with integer coefficients of the form

P(T)=14aT+ - +ag1T9" " + a,T9
Fqag 1T + Pag_oTIT2 + o 4 9Ly T2 4 9T
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(2) P(T) factors as
9

P(T) =] - esT)(1 — &T)
i=1
where each «; is a complex number of absolute value \/q and &; denote the complex
conjugate of ay.
(3) N, = #J(F,-) is given by

g
N =[] -,
i=1

where | | denote the usual complezx absolute value. In particular, Ny = P(1).
PROOF. See [3] and [8] .

2.3 Jacobians of the Hyperelliptic curves.

By Weil’s theorem, we have the following procedures to compute the order of ja-
cobian of curves of genus 2 over a finite field of characteristic 3. Similar procedure is
explained in [3], [4] for the field of characteristic 2.

(1) Compute My, My and let a; = M; — 1 —3 and ay = (My — 1 — 9+ a?)/2.
(2) Let X2+ a1 X + (a2 — 6) = 0 and find the roots, v; and v, .
(3) We have two equations,

X? -y X4+3=0, X?—%X+3=0.

(4) Let oy be a root of X2 — ;X +3 = 0 and let as be a root of X2 — X +3 = 0.
(5) Ny, = [1+3" —of — |- |1+ 3" — o — @].

3. SECURITY

To construct a secure hyperelliptic curve cryptosystem, it must resist all known
attacks. That is, we have to choose jacobian groups to satisfy the following three
conditions. First, the order of J(C,F,») has a sufficiently large prime factor (at least
40 decimal digits), which resists Pohlig-Hellman method [6]. Second, J(C,F;) cannot
be embedded into a small finite field (. » for some integer k, which is against Frey’s
generalization of MOV-attack using Tate pairing [2]. Finally, 2g + 1 < loggq™. The
last condition is against Adleman-DeMarrais-Hwang method [1]. The second can be
replaced with the sufficient condition that the largest prime factor of the order of
J(C,F,n) does not divide (¢")* — 1 for every integer k < (logg").

One of the most efficient algorithm of integer factoring is the number field sieve
method. This algorithm takes exp(O((Inm)'/?(Inlnm)?/3))) running CPU time for
an integer m. On the other hand, Pohlig-Hellman method, an efficient algorithm for
discrete logarithm problem has running time of the form exzp(O(Inm)) where m =
#I(C,Fyn) (See p133 [3]). Therefore, if the size of #J(C,Fyn ) is greater than 160 bits
and J(C,F;n) is secure, then the security level is approximately same as RSA with
1024-bit key or with a larger key.
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Let f(u) be a monic polynomial of degree 5 over F3 such that v?> = f(u) is a
hyperelliptic curve. In [7], several hyperelliptic curves on a field of characteristic 3
were studied. Here, we restrict ourselves to the hyperelliptic curves of genus 2 over
characteristic 3.

Now, we like to choose some examples which were not treated in [7]. The following
examples are selected because they contains a large prime and running times are less
than 2 hours. Since the order of jacobian group of the following examples is less than
20 decimal digits for n < 20, we will consider J(C,F,») for n > 21. Then each case
satisfies 29 + 1 = 5 < log3™ for n > 21, the security against Adleman-DeMarrais-
Hwang method is checked trivially. The largest prime of the jacobian of example of
n = 59 cases does not divide 3°%% — 1 for k < (59l0g3)? =~ 4202. The running time
of checking Frey’s generalization of MOV attack is approximately 3 hours and 17 £ 5
minutes for each example by Pentium IT 400MHz. For example of n = 53 cases, the
largest prime of the jacobian does not divide 3°3% — 1 for & < (53log3)? ~ 3391.
The running time of checking Frey’s generalization of MOV attack is approximately
1 hour 20 minutes. Namely, the second condition is checked. For the first condition,
we compute and factorize #J(C,Fyn). If #J(C,Fyn) has a prime factor with more
than 40 decimal digits, we tabulate them as follows. Here, P, denote the decimal
digits of the largest prime factor of #J(C;Fsn) and #J denotes the number of bits of
#IJ(C,Fyn ). Timing means the running CPU time (seconds) of the program to compute
and factorize #J(C,Fyn ) for 1 < n < 59.

Table 1. The Jacobians of v? = f(u) on Fyn.

u® +ud 4+ u+ 2 11 313 3=VIB 53 167 42 6531
u® +ud 4+ u+ 2 11 313 3=VI3 59 187 56 6531

The curves shown in the table 1 secure against Pohlig-Hellman method. Finally, we
conculde that the curves in the table 1 are secure and have the same or higher level of
security as RSA-1024.

Now, the jacobian of the curves are as follows.

3.1 v2 = u® +u? + 2u.

#J(C;F350) = 2-11-9075809595527460659566383654888902648187399313405247341

f(u) M, M, g 72 n  #J Py Timing

wHut+2u 6 14 -14++3 —-1-+/3 59 187 55 1908
wru?+2u+2 30 11 2L 1Bl 53 467 43 7120
WP udfu 3 13 =BT ZISVIT 53167 50 6993
w+2uP+u+2 2 10 146 1-+5 59 187 56 480
w20 futl 57 =2 Z19V9 59 187 56 1623
w2u+1 7 15 =386 =33Vh 53 167 50 4716
WH2u+1 7 15 =35 =36 59 187 49 4716

3

3
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8.2 v® = u® 4+ u® +2u+ 2.
#J(C;Fss5) = 7- 14676443 - 3657077366514169725112266760018587731609537
3.3 v2 = u® +u? +u.
#J(C;Fyss ) = 2* - 23481888288357259643532176487658172611009636974803
3.4 v =u®+2u? +u+2.
#J(C;Fys0 ) = 22 - 49916952775401241944672611347472471946106251760382866789
8.5 v* =u® 4+ 2u” +u + 1.
#J(C;Fss0 ) = 5 - 39933562220320460133120368418577581396339849557868704977
3.6 v2 =u® +2u+1.
#J(C; 35 ) = 29 - 12955524572887396333986761358295061368694068528591
3.7 v2 =ud+2u+ 1.
#J(C;F350 ) = 29 - 1233101 - 5583562850519130885994276722599220868227666721589
3.8 v2=u’+ud+u+2.
#J(C;F355) = 3 - 107 - 9554250744009442543693985949434124061 76699
39 v =u+ud+u+2.
#J(C;Fs50 ) = 3 - 66555937033868028588364937934984651155791790724235632689
For the above computations, we use mathematica 3.0 to factorize the order of ja-
cobian group using Pentium IT 400MHz. This software contains factorizing algorithm,

elliptic curve method.
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