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AVERAGE VALUES ON THE JACOBIAN VARIETY OF A

HYPERELLIPTIC CURVE

Jiman Chung and Bo-Hae Im

Abstract. We give explicitly an average value formula under the multi-

plication-by-2 map for the x-coordinates of the 2-division points D on
the Jacobian variety J(C) of a hyperelliptic curve C with genus g if

2D ≡ 2P − 2∞ (mod Pic(C)) for P = (xP , yP ) ∈ C with yP 6= 0.
Moreover, if g = 2, we give a more explicit formula for D such that

2D ≡ P −∞ (mod Pic(C)).

1. Introduction

In [3], Feng and Wu have given a mean value formula for the n-division
points on elliptic curves. We recall the definition of an n-division point of an
elliptic curve E of Q ∈ E by a point P ∈ E such that Q = nP . More precisely,
they have shown in [3, Theorem 1] that if P = (xP , yP ) is a point on an elliptic
curve E over K and [n] : E → E is the multiplication-by-n map which is an
isogeny of E and defined by P 7−→ nP , then for a point Q = (xQ, yQ) 6= O on
E, where O is the identity element of E,

1

n2

∑
P∈[n]−1(Q)

xP = xQ

and
1

n3

∑
P∈[n]−1(Q)

yP = yQ.

An application of this result is to get some information on the Discrete Loga-
rithm Problem in the group of an elliptic curve.
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In general it is not easy to compute the coordinates of the images under the
multiplication-by-n map on the Jacobian variety even though there are some
known algorithms of computing and reducing them (see [1]).

In this paper we generalize this result for the Jacobian variety of a hyperellip-
tic curve with positive genus and give an explicit formula for the average values
of coordinates of points on the Jacobian variety under the multiplication-by-2
map. First, we reduce the divisors into reduced ones (see Definition 1) and give
a simpler average formula for the coordinates of the 2-division points.

This also gives some relation between the points under the multiplication-
by-2 map and simpler results for computational use. Especially, we would like
to emphasize that our result can give an explicit average value formula of the
2-division points in terms of simple algebraic equations of a polynomial and its
derivatives. Also, we note that we can proceed the same argument if we can
specify coordinates of n-torsion points for higher n by using [2], but it is very
complicated to write in literature. So our result motivates us to try for any
[n]-map when we have coordinates of n-torsion points concretely.

2. For general genera

Let K be a number field and let K be the algebraic closure of K. We will
consider hyperelliptic curves of genus g (including g = 1) defined by

C : y2 = f(x) := x2g+1 + a2gx
2g + · · ·+ a1x+ a0,

where f(x) ∈ K[x] is factored into f(x) =
2g+1∏
i=1

(x− xi) for distinct xi ∈ K.

Denote the group of divisors of C and divisors with degree zero by div(C)
and div0(C), respectively. Denote the principal divisor group of C by Pic(C).
Then the Jacobian J(C) of C is J(C) = div0(C)/Pic(C). If the context is
clear, we may omit (mod Pic(C)). Denote the identity of J(C) by O. For
f(u) ∈ K(C)∗, let div(f(u)) =

∑
miPi −

∑
njQj , where Pi are zeros of f(u)

and Qj are poles of f(u).
Let P = (x, y) and Q = (x,−y) be points on C and let ∞ be the point at

infinity. Then P and Q are the zeros of the function f(u) = u − x ∈ K(C)∗

which has a double pole at ∞. Then div(f(u)) = P +Q− 2∞ so that for any
D = −nP ∈ div(C),−nP ≡ n(Q − 2∞) (mod Pic(C)), where n is a positive
integer.

Define inv(P ) := Q − 2∞. Further define inv(O) = O and inv(∞) = −∞
so that inv is an automorphism of the divisor class group of C. It follows that
inv(P −∞) = P −∞ if and only if P = (x, 0) (i.e., P −∞ is a 2-torsion point
of J(C) if P = (x, 0)).

Definition 1. A divisor D ∈ div0(C) is called a semireduced divisor if D is of

the form D =
n∑
k=1

mk(Pk −∞) with mk > 0 for all k, where Pi are points of C

such that Pi 6= Pj and Pi + Pj − 2∞ 6= O for all i 6= j.
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For any semireduced divisor D =
n∑
k=1

mk(Pk −∞) ∈ div(C), define

N(D) =

n∑
k=1

mk.

A semireduced divisor D is called a reduced divisor if N(D) ≤ g.
Let D =

∑
P∈C

mpP and D′ =
∑
P∈C

npP . Define

gcd(D,D′) :=
∑
P∈C

min(mp, np)P.

Let D =
n∑
k=1

mk(Pk −∞) be a semireduced divisor for some Pk = (xPk , yPk) ∈

C, 1 ≤ k ≤ n. Then it can be represented by a pair of polynomials a(u) and

b(u) over K where a(u) =
n∏
k=1

(u−xPk)mk and b(u) is the unique polynomial of

degree < deg(a(u)) with b(xPk) = yPk for all 1 ≤ k ≤ n. It can be verified that
a(u) | f(u) − (b(u))2 and D = gcd(div(a(u)), div(b(u) − v)) where v2 = f(u).
Define

div(a(u), b(u)) = gcd(div(a(u)), div(b(u)− v)).

For any P = (xP , yP ) ∈ C, let x : C → K be the x-coordinate map such
that x(P ) = xP . From now on, we will denote x(P ) = xP , x(Q) = xQ and so
on when the context is clear.

Define a function φ : J(C)→ K as follows. For any D ∈ J(C), there exists

a unique reduced divisor D̃ =
n∑
k=1

mk(Pk−∞) such that D ≡ D̃ (mod Pic(C))

by the Riemann-Roch Theorem [4, Ch.4. Theorem 1.3]. Define

φ(D) =

n∑
k=1

mkx(Pk).

Let D̃ = div(a(u), b(u)) for some polynomials a(u) and b(u). Let m=deg(a(u)).
Suppose m ≤ g and a(u) = a0 + · · ·+ am−1u

m−1 + um. Then, φ(D) = −am−1.
We recall the algorithm to reduce a semireduced divisor to a reduced form

as follows.

Algorithm 2 ([1]). An algorithm for reducing a semireduced divisor to a
reduced form.

Let D = div(a(u), b(u)) for some polynomials a(u) and b(u). Assume
deg (a(u)) > g. Let 

E = D − div(b(u)− v),

â(u) =
f(u)− (b(u))2

a(u)
,

b̂(u) ≡ −b(u) (mod â(u))
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with deg (b̂(u)) < deg (â(u)). Then, E = div(â(u), b̂(u)) ≡ D (mod Pic(C)).
It is easy to see that deg (â(u)) < deg (a(u)). We repeat this process until the
degree is g or less.

Lemma 3. Let D′ (mod Pic(C)) ∈ J(C). If D (mod Pic(C)) ∈ J(C) satisfies

nD = D′ for some positive integer n, then D + [n]−1(O) := {D + D̃ | D̃ ∈
[n]−1(O)} is equivalent to [n]−1(D′).

Proof. It is easy to check that n(D+D̃) = D′ for any D̃ ∈ [n]−1(O). Conversely
for any E ∈ [n]−1(D′),

n(E + inv(D)) = nE + inv(nD) = D′ + inv(D′) = O.

Thus E = D + D̃ for some D̃ ∈ [n]−1(O). �

Lemma 4. Let Pj = (xPj , 0) be distinct points on C for j = 1, . . . , 2g + 1.
Let A0 = {O} and Am = {Pj1 + · · ·+ Pjm −m∞ | jk 6= j` for all k and `} for

m = 1, . . . , g. Then [2]−1(O) =
g⋃
k=0

Ak and in particular, |[2]−1(O)| = 22g =

g∑
k=0

|Ak|.

Proof. Since each element of the form Pj1 + · · ·+ Pjm −m∞ is reduced, they
represent distinct elements of J(C). Thus An ∩ Am = ∅ for n 6= m. Moreover

any D ∈
g⋃
k=0

Ak is just a sum of 2-torsion points, Pj − ∞. Therefore D ∈

[2]−1(O). Hence it is enough to check that
∣∣[2]−1(O)

∣∣ =
g∑
k=0

|Ak|. It is well

known that [n]−1(O) is isomorphic to (Z/nZ)2g as groups so that
∣∣[2]−1(O)

∣∣ =

22g. By counting the number of elements, |A0| = 1 and |Ak| =
(
2g+1
k

)
for k =

1, . . . , g. Then
g∑
k=0

|Ak| =
g∑
k=0

(
2g+1
k

)
= 1

2

2g+1∑
k=0

(
2g+1
k

)
= 22g =

∣∣[2]−1(O)
∣∣. �

Hence in order to find the average value formula 1
22g

∑
D∈[2]−1(DP )

φ(D) for the

x-coordinates of 2-division points, it is enough to compute
∑

D∈[2]−1(DP )

φ(D).

Theorem 5. Let DP = 2P − 2∞ be a (reduced) divisor of J(C) for some
P = (xP , yP ) ∈ C with yP 6= 0.

Then,∑
D∈[2]−1(DP )

φ(D) = ∆(g, P )+

((
2g − 1

g − 2

)
− 22g−1

)
a2g+

(
22g − 2

(
2g + 1

g

))
xP ,

where ∆(g, P ) =
∑

D∈Ag

f(xP )
g∏
k=1

(xP−xjk )2
.
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Proof. By Lemma 3 and Lemma 4,∑
D∈[2]−1(DP )

φ(D) =
∑

D∈[2]−1(O)

φ(P −∞+D) =

g∑
k=0

∑
D∈Ak

φ(P −∞+D).

For each m ≤ g−1, N(P −∞+D) ≤ g where D ∈ Am. Thus φ(P −∞+D) =
xP +xPj1 +· · ·+xPjm . However, N(P−∞+D) > g for D ∈ Ag. Hence we need

to reduce P−∞+D into a reduced divisorD′. Let P+Pj1+· · ·+Pjg−(g+1)∞ =
div(a(u), b(u)). Then

a(u) = (u− xP )

g∏
k=1

(u− xjk) and b(u) = yP

g∏
k=1

(u− xjk)

g∏
k=1

(xP − xjk)

.

Let â(u) = f(u)−(b(u))2
a(u) and let b̂(u) be the polynomial satisfying deg(b̂(u)) ≤

deg(â(u)) and b̂(u) ≡ −b(u) (mod â(u)). Let D′ = div(â(u), b̂(u)). Since

deg(â(u)) = max{deg(f(u)), 2 deg(b(u))} − deg(a(u))

= max{2g + 1, 2g} − (g + 1) = g,

D′ is indeed a reduced divisor such that D′ ≡ P −∞ + D (mod Pic(C)). By

letting â(u) = f(u)−(b(u))2
a(u) =

g∏
k=1

(u− ck) for some ck ∈ K, we have

φ(P −∞+D) =

g∑
k=1

ck =
f(xP )

g∏
k=1

(xP − xjk)2
−

 g∑
k=1

xjk

− xP − a2g,
by comparing the coefficients of f(u)−(b(u))2

a(u) and
g∏
k=1

(u− ck).

Define

∆(g, P ) :=
∑
D∈Ag

f(xP )
g∏
k=1

(xP − xjk)2
.

Then,∑
D∈Ag

φ(P −∞+D) = ∆(g, P )−
(

2g

g − 1

) 2g+1∑
j=1

xj −
(

2g + 1

g

)
(xP + a2g)

= ∆(g, P ) +

((
2g

g − 1

)
−
(

2g + 1

g

))
a2g −

(
2g + 1

g

)
xP .

Similarly for 0 < m < g,∑
D∈Am

φ(P −∞+D) =

(
2g

m− 1

) 2g+1∑
j=1

xj +

(
2g + 1

m

)
xP .
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By adding them up,

g∑
k=0

∑
D∈Ak

φ(P −∞+D)

= xP +

g−1∑
k=1

∑
D∈Ak

φ(P −∞+D) +
∑
D∈Ag

φ(P −∞+D)

= ∆(g, P ) +

( 2g

g − 1

)
−
(

2g + 1

g

)
−

g−1∑
m=1

(
2g

m− 1

) a2g

+


 g−1∑
m=0

(
2g + 1

m

)− (2g + 1

g

)xP

= ∆(g, P ) +

((
2g − 1

g − 2

)
− 22g−1

)
a2g +

(
22g − 2

(
2g + 1

g

))
xP .

�

3. For genus 2 with arbitrary divisors

Throughout this section, we consider a hyperelliptic curve C : y2 = f(x) of
genus 2 and we let Pj = (xj , 0) for j = 1, . . . , 5 be five points on C.

Lemma 6. Let g = 2. Let D = 2P − 2∞ and let DQ = Q −∞ be divisors

of J(C) for some P = (xP , yP ) and Q = (xQ, yQ) ∈ C. Let dy
dx be the usual

implicit differentiation of y2 = f(x). Then, 2D ≡ DQ (mod Pic(C)) implies
D 6≡ O (mod Pic(C)) and we have that

2D ≡ DQ (mod Pic(C))

if and only if

(1)
d3y

dx3

∣∣∣∣∣
P

= 0

or equivalently,

(2) 4(f(xP ))2f (3)(xP )− 6f(xP )f ′(xP )f ′′(xP ) + 3(f ′(xP ))3 = 0

and

(3) xQ = xP +

(
2f(xP )f ′′(xP )− (f ′(xP ))2

)2
64(f(xP ))3

− f (4)(xP )

4!
.

Proof. Since DQ 6= O, the condition that 2D ≡ DQ (mod Pic(C)) implies
D 6≡ O (mod Pic(C)). Let 2D = 4(P − ∞) = div(a(u), b(u)) be a semire-
duced divisor such that 2D ≡ DQ (mod Pic(C)) where a(u) = (u − xP )4 and
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deg(b(u)) ≤ 3. Take

â(u) =
f(u)− (b(u))2

a(u)
and

b̂(u) ≡ −b(u) (mod â(u)) with deg(b̂(u)) ≤ deg(â(u)).

Then, deg(â(u)) = max{5, 2 deg(b(u))} − 4. Let D′ = div(â(u), b̂(u)). If
deg(b(u)) = 3, then D′ is a reduced divisor with N(D′) = 2 but N(DQ) = 1.
This is a contradiction to D′ ≡ 2D ≡ DQ (mod Pic(C)). Thus we must have
that deg(b(u)) < 3. Let h(u) = f(u) − (b(u))2. Since a(u) | h(u), we have

h(xP ) = h′(xP ) = h′′(xP ) = h(3)(xP ) = 0. Equivalently, b(k)(xP ) = dky
dxk

∣∣∣
P

for

0 ≤ k ≤ 3. Let zk := 1
k!

dky
dxk

∣∣∣
P

and fk := f(k)(xP )
k! . Then we can easily check

that

f0 = z0
2 and fk =

∑
i+j=k

zizj ,

where 0 ≤ i, j ≤ k. Since deg(b(u)) < 3 and b(u) =
3∑
k=0

b(k)(xP )
k! (u − xP )k =

3∑
k=0

zk(u− xP )k, we must have z3 = 0 or equivalently

8f20 f3 − 4f0f1f2 + f31
16y50

= 0.

Thus,

4(f(xP ))2f (3)(xP )− 6f(xP )f ′(xP )f ′′(xP ) + 3(f ′(xP ))3 = 0.

Now, we have that D′ = DQ since D′ and DQ are both reduced and D′ ≡ DQ

(mod Pic(C)). Then,

â(u) =
f(u)− (b(u))2

a(u)
= u− xP + f4 − y22 = u− xQ.

Hence,

xQ = xP +

(
2f(xP )f ′′(xP )− (f ′(xP ))2

)2
64(f(xP ))3

− f (4)(xP )

4!
. �

Theorem 7. Let g = 2, and DQ = Q−∞ be a divisor in J(C). Assume there
exists D ∈ [2]−1(DQ) of the form D = 2P − 2∞ with P = (xP , yP ) and for
each pair (j, k) such that 1 ≤ j < k ≤ 5, let b2(j, k) and b3(j, k) be solutions
for the system of equations

b0 + b1xj + b2x
2
j + b3x

3
j = 0,

b0 + b1xk + b2x
2
k + b3x

3
k = 0,

b0 + b1xP + b2x
2
P + b3x

3
P = yP ,

b1 + 2b2xP + 3b3x
2
P = f ′(xP )

2yP
.
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Let

∆ =
∑

1≤j<k≤5

1− 2b2(j, k)b3(j, k)

(b3(j, k))2
.

Then ∑
D∈[2]−1(DQ)

φ(D) = ∆−
5∑
j=1

(2f(xP ) + f ′(xP )(xj − xP ))2

4f(xP )(xj − xP )4
− 28xP .

Proof. Recalling the definition of Ai in Lemma 3 and Lemma 4 for i = 1, 2, we
let

D +Ai := {D +D′ : D′ ∈ Ai}.

Case 1. Let D+Pj −∞ = div(a(u), b(u)) ∈ D+A1 for some a(u) and b(u).
Then a(u) = (u − xj)(u − xP )2 and b(u) is the unique polynomial with the
properties deg(b(u)) < deg(a(u)) = 3 and a(u) | f(u) − (b(u))2. Moreover, by
letting b(u) = b0 + b1u+ b2u

2 we have the following system of equations:
b0 + b1xj + b2x

2
j = b(xj) = 0,

b0 + b1xP + b2x
2
P = b(xP ) = yP ,

b1 + 2b2xP = b′(xP ) = f ′(xP )
2yP

.

Then, we solve the system for b0, b1, and b2 to obtain

b2 = −
yP + f ′(xP )

2yP
(xj − xP )

(xj − xP )2
.

Let â(u) = f(u)−(b(u))2
a(u) and b̂(u) ≡ −b(u) (mod â(u)) with deg(b̂(u)) <

deg(â(u)). Let D′ = div(â(u), b̂(u)). Then, D + Pj −∞ ≡ D′ (mod Pic(C)).
It is easy to check that deg(â(u)) ≤ 2. Thus D′ is indeed a reduced divisor.
Let a(u) = c0 + c1u+ c2u

2 + u3 and â(u) = c′0 + c′1u+ u2. Then,

φ(D + Pj −∞) = −c′1 = −(a4 − b22 − c2)

= −a4 +

(
yP + f ′(xP )

2yP
(xj − xP )

)2
(xj − xP )4

− xj − 2xP

and

5∑
j=1

φ(D + Pj −∞) =

5∑
j=1

(2f(xP ) + f ′(xP )(xj − xP ))2

4f(xP )(xj − xP )4
− 10xP − 4a4.

Case 2. Similarly let D + Pj + Pk − 2∞ = div(a(u), b(u)) ∈ D + A2 for
some a(u) and b(u). Then a(u) = (u − xj)(u − xk)(u − xP )2 and b(u) is
the unique polynomial with the properties deg(b(u)) < deg(a(u)) = 4 and
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a(u) | f(u) − (b(u))2. Let b(u) = b0 + b1u + b2u
2 + b3u

3. Then we have the
following system of equations:

b0 + b1xj + b2x
2
j + b3x

3
j = b(xj) = 0,

b0 + b1xk + b2x
2
k + b3x

3
k = b(xk) = 0,

b0 + b1xP + b2x
2
P + b3x

3
P = b(xP ) = yP ,

b1 + 2b2xP + 3b3x
2
P = b′(xP ) = f ′(xP )

2yP
.

Then,

b2 =
yP ((xj−xP )(xk−xP )−(xj+xk−2xP )(xj+xk+xP ))− f

′(xP )

2yP
(xj−xP )(xk−xP )(xj+xk+xP )

(xj−xP )2(xk−xP )2 ,

and

b3 =

f ′(xP )
2yP

(xj − xP )(xk − xP ) + yP (xj − xP ) + yP (xk − xP )

(xj − xP )2(xk − xP )2
.

If we take â(u) = f(u)−(b(u))2
a(u) , let b̂(u) ≡ −b(u) (mod â(u)) with deg(b̂(u)) <

deg(â(u)) and let D′ = div(â(u), b̂(u)) so that D + Pj + Pk − 2∞ ≡ D′

(mod Pic(C)). Suppose b3 = 0. Then deg(â(u)) = 1 which implies D′ = R−∞
for some R ∈ C. Since Pj −∞ and Pk −∞ are 2-torsion elements of J(C) and
by the previous lemma, we have that

Q−∞ ≡ 2D ≡ 2(D + Pj + Pk − 2∞) ≡ 2D′ = 2R− 2∞ (mod Pic(C)).

This is clearly impossible. Thus, deg (b(u)) = 3 and â(u) is not a monic poly-

nomial of degree 2. We may take â(u) = f(u)−(b(u))2
−b23a(u)

because div(h(u)) =

div(kh(u)) for all k ∈ K and any h(u) ∈ K[u]. Then, â(u) is a monic polyno-
mial of degree 2. By using the same argument from Case 1,

φ(D + Pj + Pk − 2∞) =
1

b23
− 2b2

b3
− 2xP − xj − xk.

Let ∆ =
∑

1≤j<k≤5

1−2b2(j,k)b3(j,k)
(b3(j,k))2

. Then,

∑
1≤j<k≤5

φ(D + Pj + Pk − 2∞) = ∆− 20xP + 4a4.

Since ∑
D∈[2]−1(DQ)

φ(D) = φ(2P − 2∞) +

5∑
j=1

φ(2P + Pj − 3∞)

+
∑

1≤j<k≤5

φ(2P + Pj + Pk − 4∞),
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finally we have that∑
D∈[2]−1(DQ)

φ(D) = ∆ +

5∑
j=1

(2f(xP ) + f ′(xP )(xj − xP ))2

4f(xP )(xj − xP )4
− 28xP .

�

Remark 8. Each of the linear systems in Theorem 7 has a unique solution. In
fact, if we let A and B be the matrix of the systems in Theorem 7, respectively
(i.e., A~x = ~y, and B~u = ~v). Then,

det(A) = (xj − xp)2,
det(B) = (xk − xj)(xj − xP )2(xk − xP )2.

Since 2P − 2∞ 6= O, we have xP 6= xj and xP 6= xk for all 1 ≤ j, k ≤ 5.
Therefore, both systems have a unique solution.

Lemma 9. Let g = 2. Let DR = R − ∞ be a divisor in J(C) for some
R = (xR, yR) ∈ C and let D = P + Q − 2∞ ∈ J(C) for some P and Q ∈ C
with x(P ) 6= x(Q). Then, 2D ≡ DR (mod Pic(C)) implies P,Q 6∈ [2]−1(O)
and

2D ≡ DR (mod Pic(C))

if and only if

(4)
yP − yQ
xP − xQ

=
1

2

(
dy

dx

∣∣∣∣
P

+
dy

dx

∣∣∣∣
Q

)
and

(5) xR =
1

2

xP + xQ −

(
f (4)(xP )

4!
+
f (4)(xQ)

4!

)+

(
dy
dx

∣∣∣
P
− dy

dx

∣∣∣
Q

)2

4(xP − xQ)2
,

where dy
dx is the usual implicit differentiation of y2 = f(x).

Proof. If P −∞ or Q−∞ is a 2-torsion divisor, we have N(2D) = 0 or 2 but
N(DR) = 1. Thus, we assume xP 6= xk and xQ 6= xk for 1 ≤ k ≤ 5. Let
2D = 2(P + Q − 2∞) = div(a(u), b(u)) be a semireduced divisor such that
2D ≡ DR (mod Pic(C)), where a(u) = (u− xP )2(u− xQ)2 and deg(b(u)) ≤ 3.
The polynomial b(u) must satisfy the following system of equations;

b(xP ) = yP ,

b′(xP ) = f ′(xP )
2yP

,

b(xQ) = yQ,

b′(xQ) =
f ′(xQ)
2yQ

,

with determinant (xP − xQ)4 6= 0. Let b(u) = b0 + b1u+ b2u
2 + b3u

3. Then

b2 =
3(xP+xQ)(yP−yQ)−

(
f′(xP )

2yP
+
f′(xQ)

2yQ

)
(x2
P−x

2
Q)−(xP−xQ)

(
f′(xQ)

2yQ
xP+

f′(xP )

2yP
xQ

)
(xP−xQ)3
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and

b3 =
(xP − xQ)

(
f ′(xP )
2yP

+
f ′(xQ)
2yQ

)
− 2(yP − yQ)

(xP − xQ)3

by using the Cramer’s rule. Take

â(u) =
f(u)− (b(u))2

a(u)
and

b̂(u) ≡ −b(u) (mod â(u)) with deg(b̂(u)) ≤ deg(â(u)).

Then, deg(â(u)) = max{5, 2 deg(b(u))} − 4. Let D′ = div(â(u), b̂(u)). If
deg(b(u)) = 3, then D′ is a reduced divisor with N(D′) = 2 but N(DQ) = 1.
This is a contradiction to D′ ≡ 2D ≡ DQ (mod Pic(C)). Thus we must have
deg(b(u)) < 3 which results in

0 =
(xP − xQ)2

2
b3 =

1

2

(f ′(xP )

2yP
+
f ′(xQ)

2yQ

)
− (yP − yQ)

(xP − xQ)
.

Now, D′ = DR since D′ and DR are both reduced and D′ ≡ DR (mod Pic(C)).
Then,

â(u) =
f(u)− (b(u))2

a(u)
= u− xR.

Since the constant term of f(u)−(b(u))2
a(u) must be −xR,

xR = b22 − a4 − 2(xP + xQ).

By substituting

a4 =
1

2

(
f (4)(xP )

4!
+
f (4)(xQ)

4!
− 5(xP + xQ)

)
into the above equation, we get

xR =
1

2

xP + xQ −

(
f (4)(xP )

4!
+
f (4)(xQ)

4!

)
+

 (xP + xQ)(yQ − yQ)

(xP − xQ)3
−

f ′(xQ)
2yQ

xP + f ′(xP )
2yP

xQ

(xP − xQ)2

2

.

Finally, we substitute

yP − yQ
xP − xQ

=
1

2

(
f ′(xP )

2yP
+
f ′(xQ)

2yQ

)
to get the result. �

In particular, if g = 2, for D′ ∈ J(C), there exits D ∈ [2]−1(D′) of the form
D = P +Q−2∞ for some P,Q ∈ C. If P = Q, then Theorem 7 can be applied.
Therefore, we prove the following theorem when P 6= Q.



344 J. CHUNG AND B.-H. IM

Theorem 10. Let g = 2 and let DR = R − ∞ be a divisor in J(C). Let
D ∈ [2]−1(DR) be of the form D = P + Q − 2∞ with xP 6= xQ. For each
pair (j, k) such that 0 ≤ j < k ≤ 5, let b2(j, k) and b3(j, k) be solutions to the
system of equations 

b0 + b1xj + b2x
2
j + b3x

3
j = 0,

b0 + b1xk + b2x
2
k + b3x

3
k = 0,

b0 + b1xP + b2x
2
P + b3x

3
P = yP ,

b0 + b1xQ + b2x
2
Q + b3x

3
Q = yQ,

and let

∆ =
∑

1≤j<k≤5

1− 2b2(j, k)b3(j, k)

(b3(j, k))2
.

Then∑
D∈[2]−1(DQ)

φ(D) = ∆ +

5∑
j=1

(xQyP − xP yQ + xj(yQ − yP ))2

(xP − xQ)2(xP − xj)2(xQ − xj)2
− 14xP − 14xQ.

Proof. Again, we will consider two cases in terms of two sets D+A1 and D+A2.
Case 1. Let D+Pj−∞ = div(a(u), b(u)) ∈ D+A1 with a(u) = (u−xj)(u−

xP )(u− xQ) and b(u) = b0 + b1u+ b2u
2 for some b0, b1, and b2. Then, we get

the system of equations,
b0 + b1xj + b2x

2
j = b(xj) = 0,

b0 + b1xP + b2x
2
P = b(xP ) = yP ,

b0 + b1xQ + b2x
2
Q = b(xQ) = yQ

with determinant (xP − xj)(xQ − xj)(xQ − xP ) 6= 0. Then,

b2 =
xQyP − xP yQ + xj(yQ − yP )

(xP − xQ)(xP − xj)(xQ − xj)

by solving the system.
Let

D′ = div(â(u), b̂(u)) with â(u) =
f(u)− (b(u))2

a(u)
and

b̂(u) ≡ −b(u) (mod â(u)) with deg(b̂(u)) < deg(â(u)) = 2.

Then D′ is a reduced divisor such that D+Pj−∞ ≡ D′ (mod Pic(C)). Then,

φ(D + Pj −∞) = −(a4 − b22 + (xj + xP + xQ))

=
(xQyP − xP yQ + xj(yQ − yP ))2

(xP − xQ)2(xP − xj)2(xQ − xj)2
− a4 − (xj + xP + xQ).
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Thus,

5∑
j=1

φ(D+Pj −∞) =

5∑
j=1

(xQyP − xP yQ + xj(yQ − yP ))2

(xP − xQ)2(xP − xj)2(xQ − xj)2
− 4a4− 5xP − 5xQ.

Case 2. Let D + Pj + Pk − 2∞ = div(a(u), b(u)) ∈ D + A2, where a(u) =
(u− xj)(u− xk)(u− xP )(u− xQ) and b(u) = b0 + b1u+ b2u

2 + b3u
3 for some

bj (j = 0, 1, 2, 3). Then we have the following system of equations:
b0 + b1xj + b2x

2
j + b3x

3
j = b(xj) = 0,

b0 + b1xk + b2x
2
k + b3x

3
k = b(xk) = 0,

b0 + b1xP + b2x
2
P + b3x

3
P = b(xP ) = yP ,

b0 + b1xQ + b2x
2
Q + b3x

3
Q = b(xQ) = yQ,

with determinant (xP − xj)(xQ − xj)(xP − xk)(xQ − xk)(xP − xQ) 6= 0.
Then,

b2 =
xP yQ(xP− xj+ xk)(xP + xj− xk)− xQyP (xQ − xj + xk)(xQ + xj − xk)

(xP − xQ)(xP − xj)(xP − xk)(xQ − xj)(xQ − xk)

+
yQxjxk(xP + xj + xk)− yPxjxk(xQ + xj + xk)

(xP − xQ)(xP − xj)(xP − xk)(xQ − xj)(xQ − xk)
, and

b3 =
yP (xQ − xj)(xQ − xk)− yQ(xP − xj)(xP − xk)

(xP − xQ)(xP − xj)(xP − xk)(xQ − xj)(xQ − xk)
.

Let

â(u) =
f(u)− (b(u))2

a(u)
and

b̂(u) ≡ −b(u) (mod â(u)) with deg(b̂(u)) < deg(â(u)).

Let D′ = div(â(u), b̂(u)) so that D+Pj +Pk − 2∞ ≡ D′ (mod Pic(C)). Using
the same argument from Theorem 7, we have b3 6= 0 and

φ(D + Pj + Pk − 2∞) =
1

b23
− 2b2

b3
− xP − xQ − xj − xk.

Let ∆ =
∑

1≤j<k≤5

1−2b2(j,k)b3(j,k)
(b3(j,k))2

. Then,∑
1≤j<k≤5

φ(D + Pj + Pk − 2∞) = ∆− 10xP − 10xQ + 4a4.

Since ∑
D∈[2]−1(DQ)

φ(D) = φ(P +Q− 2∞) +

5∑
j=1

φ(P +Q+ Pj − 3∞)

+
∑

1≤j<k≤5

φ(P +Q+ Pj + Pk − 4∞),
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we get∑
D∈[2]−1(DQ)

φ(D) = ∆ +

5∑
j=1

(xQyP − xP yQ + xj(yQ − yP ))2

(xP − xQ)2(xP − xj)2(xQ − xj)2
− 14xP − 14xQ.

�

Lemma 11. Let C : y2 = f(x) be a hyperelliptic curve of genus g ≥ 1 defined
over K and let D′ ∈ J(C) be a divisor. Then∑

D∈[n]−1(D′)

D = n2g−1D′.

Proof. Let E be any divisor satisfying nE = D′. Then,∑
D∈[n]−1(D′)

D =
∑

D∈[n]−1(O)

(E +D) = n2gE +
∑

D∈[n]−1(O)

D = n2gE = n2g−1D′

by Lemma 3 and the fact that
∑
h∈G

h = 0, where G = Z/n1Z × · · · × Z/nkZ

with k > 1. �

Corollary 12. Let g = 2 and let P ∈ C satisfy (1). Then,

φ

 ∑
D∈[2]−1(P−∞)

D

 = 2xP +

(
2f(xP )f ′′(xP )− (f ′(xP ))2

)2
32(f(xP ))3

− f (4)(xP )

12
.

Proof. By using Lemma 11, it is easy to see that∑
D∈[2]−1(P−∞)

D = 8(P −∞).

If the point P satisfies (1), then 4(P − ∞) ≡ Q − ∞ for some Q ∈ C from
Lemma 6. Moreover,

xQ = xP +

(
2f(xP )f ′′(xP )− (f ′(xP ))2

)2
64(f(xP ))3

− f (4)(xP )

4!
.

Hence,

φ

 ∑
D∈[2]−1(P−∞)

D

 = φ(2(Q−∞)) = 2xQ

= 2xP +

(
2f(xP )f ′′(xP )− (f ′(xP ))2

)2
32(f(xP ))3

− f (4)(xP )

12
.
�

Remark 13. We note that it is possible to compute

φ

 ∑
D∈[n]−1(P−∞)

D

 = φ(n2g−1(P −∞))
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for any genus g and any integer n but it is very hard to find explicit value when
n and g is larger. Corollary 12 is a special case of [2, Theorem 8.35], where

n = 2 and g = 2 and the computation result of φ

( ∑
D∈[2]−1(P−∞)

D

)
is given

explicitly.

4. An example

In this section, we give an example which can apply our formula given in
the previous sections.

Example 14. In this example, we consider the case when DQ = inv(P )−∞
for DP = P −∞ defined in Lemma 6. In this case, such divisors P −∞ are
5-torsion points.

For a fixed k ∈ K − {0}, let

C : y2 = f(x) := x5 + k.

We apply Lemma 6 to the curve C. Then we get the equation

15x2 − 120kx7 + 240k2x2 = 0

which is equivalent to the equation

x2(x5 − 4k)2 = 0.

Thus, we have exactly 12 points satisfying Lemma 6. Denote them by
P0+ = (0, k1/2),

P0− = (0,−k1/2),

Pξj+ = ((4k)1/5ξj , (5k)1/2) for j = 1, . . . , 5,

Pξj− = ((4k)1/5ξj ,−(5k)1/2) for j = 1, . . . , 5,

where ξ = e
2πi
5 is a primitive 5th root of unity. Let

D0+ = 2(P0+ −∞),

D0− = 2(P0− −∞),

Dξj+ = 2(Pξj+ −∞) for j = 1, . . . , 5,

Dξj− = 2(Pξj− −∞) for j = 1, . . . , 5.

For the divisor D0+, it is easy to see that φ(2D0+) = 0 so that

2D0+ ≡ P0+ −∞ or 2D0+ ≡ P0− −∞ (mod Pic(C)).

Equivalently,

3(P0+ −∞) ≡ 0 or 5(P0+ −∞) ≡ 0 (mod Pic(C)).
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If 3(P0+−∞) ≡ 0 (mod Pic(C)), then 2(P0+−∞) ≡ (P0−−∞) (mod Pic(C)).
This is impossible because N(2(P0+ −∞)) 6= N(P0− −∞). Thus P0+ is a 5-
torsion point and similarly P0− is also a 5-torsion point. As a result, we have
the subgroup of order 5

S = {O,P0+ −∞, 2(P0+ −∞), P0− −∞, 2(P0− −∞)}.

Again, we can verify that

xP = xP +

(
2f(xP )f ′′(xP )− (f ′(xP ))2

)2
64(f(xP ))3

− f (4)(xP )

4!

for xP = (4k)1/5ξj for any j = 1, . . . , 5. Thus,

5(Pξj+ −∞) ≡ 0 (mod Pic(C)),

by using the same argument and

Tj = {O,Pξj+ −∞, 2(Pξj+ −∞), Pξj− −∞, 2(Pξj− −∞)}

are other subgroups of order 5.
For P = P0+ = (0, k1/2), we apply Theorem 7 to get the average value of

2-division points. Since x5 + k =
5∏
j=1

(x+ k
1
5 ξj), we have that

b3(j, `) =
−k−1

10 (ξj + ξ`)

ξ2jξ2`

and

b2(j, `) =
k

1
10

ξjξ`
− k

1
10 (ξj + ξ`)2

ξ2jξ2`
.

Then,

∆(P ) = k
1
5

∑
1≤j<`≤5

ξ4jξ4` − (ξ2j + ξ2` + 1)(ξj + ξ`)

(ξj + ξ`)2
,

and also
5∑
j=1

(2f(xP ) + f ′(xP )(xj − xP ))2

4f(xP )(xj − xP )4
=

5∑
j=1

k
1
5 ξj = 0,

where xj = −k 1
5 ξj in this case. We can represent ∆(P ) = A

(ξ+1)2 + B
(ξ2+1)2 for

some appropriate A and B ∈ C. Then, we can show that A = B = 0 by the
direct elementary calculations.

Thus, the average value of the x-coordinates of 2-division points on J(C) is

1

16

∑
D∈[2]−1(P0−−∞)

φ(D) = 0.
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