• Title/Summary/Keyword: Hydrogen fermentation

Search Result 224, Processing Time 0.041 seconds

Biological Hydrogen Production By Pre-treatment of Sugar Wastewater Using Acidic or Alkaline Chemicals (산·알칼리 전처리를 통한 제당 폐수의 생물학적 수소생산)

  • Lee, Tae-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.1
    • /
    • pp.10-16
    • /
    • 2013
  • Characteristics of biological hydrogen production rate and organic acid under anaerobic fermentation process were investigated with sugar wastewater. Hydrogen production rate was higher with alkaline pre-treatment than acidic pre-treatment, resulting in 70% increment. An adequate supply of the nutrients (N or P) into raw sugar wastewater could increase hydrogen production rate. Carbohydrate degradation of the anaerobic fermentation process was not directly related with hydrogen production. Sugar wastewater with the addition of the nutrients shows 3 times higher B/A ratio than the raw sugar wastewater. B/A ratio of the wastewater with alkaline pre-treatment and nutrients addition was most higher than other samples, showing 4.02 of B/A ratio. Higher B/A ratio shows higher hydrogen production rate at each sample.

Effect of Hydraulic Retention Time on Fermentative Hydrogen and Byproducts Production from Food Waste (음식물쓰레기 발효 시 수리학적 체류시간에 따른 수소 및 부산물 생성 특성)

  • Kim, Sang-Hyoun;Shin, Hang-Sik
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.443-446
    • /
    • 2005
  • Hydrogen fermentation from food waste was attempted at different hydraulic retention time(HRT, 18-42 h). A continuous reactor fed with ground, alkali-treated and diluted food waste(average VS 4.4%) exhibited stable hydrogen production during 126 days. Hydrogen production depended on HRT, resulting in the maximum values of 25.8 mL $H_2/g\;VS_{added}$, 0.36 mol $H_2/mol\;hexose_{added}$ and 0.91 L $H_2/L/d$ at HRT 30 h. n-Butyrate and isopropanol production increased with hydrogen production increased, while acetate production decreased. The fermentation efficiency ranged from 53.3 to 65.7%, which implied that hydrogen fermentation would substitute conventional acidogenesis of food waste.

Time progress of dark fermentation for biological hydrogen production using Chlamydomonas reinhardtii

  • Kim, Ji-Seong;Gong, Gyeong-Taek;Park, Dae-Won;Sim, Sang-Jun;Park, Tae-Hyeon;Jo, Gyeong-Suk;Jeong, Yun-Cheol
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.162-163
    • /
    • 2003
  • Through the experiment, process of producing hydrogen and organic compounds using C. reinhardtii has been researched. In dark fermentation, pH and dry cell weight as well as starch content decreased as time goes, while organic compounds and hydrogen were produced more in accordance with time. Still, organic compounds showed tendency to increase in accordance with time, but hydrogen reached the maximum on the third day.

  • PDF

Hydrogen Production and Organic Removal according to Mixture Ratio of Food Wastewater and Swine Wastewater using Anaerobic Batch Reactor (회분식 혐기성 소화 반응기에서 음식물탈리액과 양돈폐수의 혼합비에 따른 수소 생산 및 유기물 제거)

  • Kim, Choong-Gon;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.641-647
    • /
    • 2007
  • This study aims to find out optimum condition for hydrogen production and organic removal when treating food and swine wastewater together. For this purpose, various batch tests were conducted by changing mixture ratio from 6:4 (food wastewater:swine wastewater) to 1:9 without pretreatment process. For hydrogen production through anaerobic fermentation, the mixture ratios of R-1 (6:4), R-2 (5:5) and R-6 (1:9) were out of pH range appropriate for hydrogen production and mixture ratios of R-3 (4:6), R-4 (3:7), and R-5(2:8) showed appropriate hydrogen production where their pH ranges were 5.1~5.5. Especially in case of R-3, it consistently maintained appropriate pH range for hydrogen production for 72hr and produced maximum hydrogen. The characteristics of hydrogen production and cumulative hydrogen production according to each mixture ratio showed that R-1, R-2 and R-6 did not produce any hydrogen, and maximum hydrogen productions of R-3, R-4 and R-5 were 593ml, 419ml and 90ml, respectively. Total cumulative hydrogen productions of R-3, R-4 and R-5 were 1690ml, 425ml and 96ml, respectively. Based on previous results, it was concluded that, the most appropriate mixture ratio of food wastewater and swine wastewate rwas 4:6 (R-3). The experiment for COD removal rate to evaluate organic removal efficiency revealed that R-3, R-4 and R-5 showed high removal efficiencies during the highest hydrogen production amount and the highest efficiency was 41% with R-3.

Microbial hydrogen production: Dark Anaerobic Fermentation and Photo-biological Process (미생물에 의한 수소생산: Dark Anaerobic Fermentation and Photo-biological Process)

  • Kim, Mi-Sun;Baek, Jin-Sook
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.393-400
    • /
    • 2005
  • Hydrogen($H_2$) as a clean, and renewable energy carrier will be served an important role in the future energy economy. Several biological $H_2$ production processes are known and currently under development, ranging from direct bio-photolysis of water by green algae, indirect bio-photolysis by cyanobacteria including the separated two stage photolysis using the combination of green algae and photosynthetic microorganisms or green algae alone, dark anaerobic fermentation by fermentative bacteria, photo-fermentation by purple bacteria, and water gas shift reaction by photosynthetic or fermentative bacteria. In this paper, biological $H_2$ production processes, that are being explored in fundamental and applied research, are reviewed.

Effects of Yeast Strains and Fermentation Temperatures in Production of Hydrogen Sulfide During Beer Fermentation (맥주의 발효과정에서 효모와 발효온도가 황화수소의 발생에 미치는 영향)

  • Kim, Young-Ran;Moon, Seung-Tae;Park, Seung-Kook
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.238-242
    • /
    • 2008
  • In this study, hydrogen sulfide ($H_2S$) production was examined during beer fermentation using two ale and two lager yeast strains. In the lager yeast fermentation, a large amount of $H_2S$ was produced in the early fermentation stages when the yeast were actively fermenting wort, indicating a positive relationship between the level of H2S production and the yeast growth rate during fermentation. The ale yeasts produced much lower levels of H2S than the lager yeasts. In the lager fermentation, a higher fermentation temperature shortened the fermentation period, but much higher levels of $H_2S$ were produced at higher temperatures. American pilsner lager yeast fermenting at $15^{\circ}C$ produced a relatively high level of $H_2S$ at the end of fermentation, which would require a longer aging time to remove this malodorous volatile sulfur compound. Not including the English ale strain, which produced a higher level of H2S at lower temperatures, the ale yeast produced lower levels of $H_2S$ at lower temperatures, suggesting that each strain has an optimum fermentation temperature for H2S production.

Impact of Lactic Acid and Hydrogen Ion on the Simultaneous Fermentation of Glucose and Xylose by the Carbon Catabolite Derepressed Lactobacillus brevis ATCC 14869

  • Jeong, Kyung Hun;Israr, Beenish;Shoemaker, Sharon P.;Mills, David A.;Kim, Jaehan
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1182-1189
    • /
    • 2016
  • Lactobacillus brevis ATCC 14869 exhibited a carbon catabolite derepressed phenotype that has ability to consume fermentable sugars simultaneously with glucose. To evaluate this unusual phenotype under harsh conditions during fermentation, the effects of lactic acid and hydrogen ion concentrations on L. brevis ATCC 14869 were examined. Kinetic equations describing the relationship between specific cell growth rate and lactic acid or hydrogen ion concentration were deduced empirically. The change of substrate utilization and product formation according to lactic acid and hydrogen ion concentration in the media were quantitatively described. Although the simultaneous utilization has been observed regardless of hydrogen ion or lactic acid concentration, the preference of substrates and the formation of two-carbon products were changed significantly. In particular, acetic acid present in the medium as sodium acetate was consumed by L. brevis ATCC 14869 under extreme pH of both acid and alkaline conditions.

Effects of Short-Term Oxygen Exposure on Anaerobic Reductive Dechlorination and Formate Fermentation by Evanite Culture (혐기성탈염소화 혼합균주에서 산소 노출이 탈염소화 및 수소발생 발효에 미치는 영향)

  • Hong, Ui-Jeon;Park, Sun-Hwa;Lim, Jong-Hwan;Ahn, Hong-Il;Kim, Nam-Hee;Lee, Suk-Woo;Kim, Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.6
    • /
    • pp.114-121
    • /
    • 2010
  • Oxygen sensitivity and substrate requirement have been known as possible reasons for the intricate growth of Dehalococcoides spp. and limiting factors of for routinely applying bioaugmentation using anaerobic Dehalococcoides-containing microbes for remediating chlorinated organic compounds. To explore the effect of the short-term exposure of the short-term exposure of oxygen on Dehalococcoides capability, dechlorination performance, and hydrogen production fermentation from formate, an anaerobic reductive dechlorination mixed-culture (Evanite culture) including dehalococcoides spp. was in this study. In the results, once the mixed-culture were exposed to oxygen, trichloroethylene (TCE) degradation rate decreased and it was not fully recovered even addition of excess formate for 40 days. In contrast, hydrogen was continuously produced by hydrogen-fermentation process even under oxygen presence. The results indicate that although the oxygen-exposed cells cannot completely dechlorinate TCE to ethylene (ETH), hydrogen fermentation process was not affected by oxygen presence. These results suggest that dechlorinating microbes may more sensitive to oxygen than fermenting microbes, and monitoring dechlorinators activity may be critical to achieve an successful remediation of a TCE contaminated-aquifer through bioaugmentation using Dehalococcoides spp..

Photo-Fermentative Hydrogen Production by Rhodobacter Sphaeroides KD131 under Various Culture Conditions (다양한 배양조건에 따른 Rhodobacter sphaeroides KD131의 광발효 수소생산)

  • Son, Han-Na;Kim, Dong-Hoon;Lee, Won-Tae;Rhee, Young-Ha;Kim, Mi-Sun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.451-457
    • /
    • 2011
  • Purple non-sulfur (PNS) bacterium $Rhodobacter$ $sphaeroides$ KD131 was studied with the aim of achieving maximum hydrogen production using various carbon and nitrogen sources at different pH conditions. Cells grew well and produced hydrogen using $(NH_4){_2}SO_4$ or glutamate as a nitrogen source in combination with a carbon substrate, succinate or malate. During 48h of photo-heterotrophic fermentation under 110$W/m^2$ illumination using a halogen lamp at $30^{\circ}C$, 67% of 30mM succinate added was degraded and the hydrogen yield was estimated as 3.29mol $H^2$/mol-succinate. However, less than 30% of formate was consumed and hydrogen was not produced due to a lack of genes coding for the formate-hydrogen lyase complex of strain KD131. Initial cell concentrations of more than 0.6g dry cell weight/L-culture broth were not favorable for hydrogen evolution by cell aggregation, thus leading to substrate and light unavailability. In a modified Sistrom's medium containing 30mM succinate with a carbon to nitrogen ratio of 12.85 (w/w), glutamate produced 1.40-fold more hydrogen compared to ammonium sulfate during the first 48h. However, ammonium sulfate was 1.78-fold more effective for extended cultivation of 96h. An initial pH range from 6.0 to 9.0 influenced cell growth and hydrogen production, and maintenance of pH 7.5 during photofermentation led to the increased hydrogen yield.

Development of a Method to Measure Hydrogen Sulfide in Wine Fermentation

  • Park, Seung-Kook
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.9
    • /
    • pp.1550-1554
    • /
    • 2008
  • A hydrogen sulfide $(H_2S)$ detecting tube was developed for the quantitative determination of $H_2S$ produced by yeast during laboratory scale wine fermentations. The detecting tube consisted of a small transparent plastic tube packed with an $H_2S$-sensitive color-indicating medium. The packed medium changed color, with the color change progressing upward from the bottom of the tube, upon exposure to $H_2S$ produced by yeast during fermentation. A calibration study using a standard $H_2S$ gas showed that the length of the portion that darkened was directly related to the quantity of $H_2S$ (${\mu}g$) with a high correlation coefficient ($r^2$=0.9997). The reproducibility of the $H_2S$ detecting tubes was determined with five repetitive measurements using a standard $H_2S$ solution [5.6${\mu}g$/200 ml (28 ppb)], which resulted in a coefficient of variation of 3.6% at this level of $H_2S$. With the sulfide detecting tubes, the production of $H_2S$ was continuously monitored and quantified from laboratory scale wine fermentations with different yeast strains and with the addition of different levels of elemental sulfur to the grape juice. This sulfide detecting tube technology may allow winemakers to quantitatively measure $H_2S$ produced under different fermentation conditions, which will eventually lead winemakers to better understand the specific factors and conditions for the excessive production of $H_2S$ during wine fermentation in a large production scale.