Browse > Article

Microbial hydrogen production: Dark Anaerobic Fermentation and Photo-biological Process  

Kim, Mi-Sun (Biomass Research Center, Korea Institute of Energy Research)
Baek, Jin-Sook (Biomass Research Center, Korea Institute of Energy Research)
Publication Information
KSBB Journal / v.20, no.6, 2005 , pp. 393-400 More about this Journal
Abstract
Hydrogen($H_2$) as a clean, and renewable energy carrier will be served an important role in the future energy economy. Several biological $H_2$ production processes are known and currently under development, ranging from direct bio-photolysis of water by green algae, indirect bio-photolysis by cyanobacteria including the separated two stage photolysis using the combination of green algae and photosynthetic microorganisms or green algae alone, dark anaerobic fermentation by fermentative bacteria, photo-fermentation by purple bacteria, and water gas shift reaction by photosynthetic or fermentative bacteria. In this paper, biological $H_2$ production processes, that are being explored in fundamental and applied research, are reviewed.
Keywords
Hydrogen; biological hydrogen production; bio-photolysis; dark fermentation; photo-fermentation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Addario, D. E., E. Fascetti, and M. Valdiserri (1996), Hydrogen production from organic waste by continuous culture of Rhodobacter sphaeroides RY. Hydrogen energy progress, Proc. 11th World Hydrogen Energy Conference 1996. Stuttgatt. Germany, pp2577-2582
2 Kim, J. S., K. Ito, K. Izaki, and H. Takahashi (1987), Agri. BioI. Chem. 51, 2591-3593   DOI
3 Benemann, J. R., J. A. Berenson, N. O. Kaplan, and M. D. Kamen (1973), Hydrogen Evolution by a ChIoroplast-Ferredoxin- Hydrogenase System, Proc. Nat. Acad Sci. USA 70, 2317-2320
4 Vasilyeva, L. G., M. Miyake, E. Khatipov, T. Wakayama, M. Sekine, M. Hara, E Nakada, Y. Asada, and J. Miyake (1999), Enhanced hydrogen production by a mutant of Rhodobacter sphaeroides having an alterd light-harvesting system, J. Biosci. Bioeng. 87, 619-624   DOI   ScienceOn
5 Klemme, J. H. (1968), Untersuchungen zur Photoautotrophie mitmolekularem Wasserstoff bei neuisolierten schwefelfreien Purpurbakterien, Arch. Mikrobiol. 64, pp29-42   DOI
6 김미선, 문광웅, 이상근 (1998), Rhodpseudomonas sphaeroides에 의한 수소생산 -glucose 및 유기산의 영향, Kor. J. Appl. Microbiol. Biotechnol. 26, 89-95
7 Ikuta, Y., T. Akano, N. Shoioji, and I. Maeda (1998), Biohydrogen production by photosynthetic microorganisms, In Biohydrogen, O. Zaborsky (Ed.) Plenum Press, New York, pp319 - 328
8 Jackson, D. D. and J. W. Ellms (1886), Reports Massachusetts State Board Health, pp410-420
9 Gaffron, H. and J. Rubin (1942), Fermentative and photochemical production of hydrogen in algae, J. Gen. Physiol. 26, 219-240   DOI   PUBMED
10 Travieso, L., F. Benitez, and M. Hernadez (1998), Prospects of biological hydrogen production in Cuba, Proc. 12th World Hydrogen Energy Conference. Hydrogen Energy Progress XII. Buenos Aris, Argentine, June, ppI2-15, 827-832
11 Benemann, J. R. and N. M. Weare (1974), Hydrogen evolution by nitrogen fixing Anabaena cylindrica cultures, Science 184, 175-17   DOI   PUBMED   ScienceOn
12 Szyper, J. P., A. Y. Brandon, J. R. Benemann, M. R. Tredici, and O. R. Zarborsky (1998), Internal Gas Exchange Photobioreactor development and testing in Hawaii, pp441-446
13 Boichenko, V. A. and P. Hoffman (1997), Photosynthetic hydrogen production. in prokaryotes and eucaryotes: occurrence, mechanism, and functions, Photosynthetica 30, 527-552
14 Gaudernack, B. (1998), Photoproduction of hydrogen Annex 10 of the lEA hydrogen programme, Proc. 12th World Hydrogen Energy Conference. Hydrogen Energy Progress XII. Buenos Aris, Argentine, June, pp12-15, 2011-2023
15 Bakterien-Energiekraftwerke der Zukunft. Marz (1998), UmweltMagazin, pp53
16 Development of environmentally friendly technology for the production of hydrogen, New Energy and Industrial Technology Development Organization (NEDO), Global Environment Technology Department Brochure
17 Gray, C. T. and H. Gest (1965), Biological formation of molecular hydrogen, Science 148, 186-192   DOI   PUBMED   ScienceOn
18 Melis, A, L. Zhang, M. Foster, M. L. Ghirardi, and M. Seibert (2000), Sustained Photobiological Hydrogen Gas Production upon Reversible Inactivation of Oxygen Evolution in the Green Alga Chlamydomonas reinhardtii, Plant Physiol. 122, 127-135   DOI   ScienceOn
19 Gest, H. and M. D. Kamen (1949), Photoproduction of molecular. hydrogen by Rhodospirillum rubrum, Science 109, 558-559   DOI   PUBMED
20 Hillmer, P. and H. Gest (1977), $H_2$ metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: $H_2$ production by growing cultures, J. Bacteriol. 129, 724-731
21 Greenbaum, E, J. W. Lee, C. V. Tevault, S. L.. Blankinship, and L. J. Melis (1995), $CO_2$ Fixation and Photoevolution of $H_2$ and $O_2$ in a Mutant of Chlamydomonas Lacking Photosystem I, Nature 376, 438-441   DOI   ScienceOn
22 Weaver, P. F., S. Lien, and M. Seibert (1980), Photobiological production of hydrogen, Solar Energy 24, 3-45   DOI   ScienceOn
23 Hendrickx, M., A. Vansteenbeeck, and J. DeLeg (1986), The culture, general physiology, morphology and classification of the nonsulfur purple and brown bacteria, System, Appl. Microbiol. 8, 239-244   DOI
24 Markov, S. A., M. J. Bazin, and D. O. Hall (1995), Advances in Biochem., Eng. Biotech. 52, 60-81
25 Ghirardi, M. L., S. P. Toon, and M. Seibert (1995), Proc. Annual Review Meeting DOE Office of Utility Technol. Hydrogen Program Review, Miami, FL
26 Lindblad, P., Y. Asada, J. Benemann, P. Hallenbeck, A Melis, J. Miyake, M. seibert. and O. Skulberg (2000), lEA Hydrogen- Agreement, Task 15, Proc. 13th World Hydrogen Energy Conference. Hydrogen Energy Progress XIII Beijing, China June, pp12-15, 56-59
27 Gaffron, H. and Rubin (1942), Fermentative and photochemical. production of hydrogen in algae, J. Gen. Physiol. 26, 219-240   DOI   PUBMED
28 Van Niel, C. B. (1944), The culture, general physiology, morphology and classification of the nonsulfur purple and brown bacteria, Bacteriol. Rev. 8, 1