Browse > Article
http://dx.doi.org/10.4014/jmb.1512.12038

Impact of Lactic Acid and Hydrogen Ion on the Simultaneous Fermentation of Glucose and Xylose by the Carbon Catabolite Derepressed Lactobacillus brevis ATCC 14869  

Jeong, Kyung Hun (Department of Food and Nutrition, Chungnam National University)
Israr, Beenish (Department of Food and Nutrition, Chungnam National University)
Shoemaker, Sharon P. (Department of Food Science and Technology, California Institute for Food and Agricultural Research, University of California)
Mills, David A. (Department of Food Science and Technology, California Institute for Food and Agricultural Research, University of California)
Kim, Jaehan (Department of Food and Nutrition, Chungnam National University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.7, 2016 , pp. 1182-1189 More about this Journal
Abstract
Lactobacillus brevis ATCC 14869 exhibited a carbon catabolite derepressed phenotype that has ability to consume fermentable sugars simultaneously with glucose. To evaluate this unusual phenotype under harsh conditions during fermentation, the effects of lactic acid and hydrogen ion concentrations on L. brevis ATCC 14869 were examined. Kinetic equations describing the relationship between specific cell growth rate and lactic acid or hydrogen ion concentration were deduced empirically. The change of substrate utilization and product formation according to lactic acid and hydrogen ion concentration in the media were quantitatively described. Although the simultaneous utilization has been observed regardless of hydrogen ion or lactic acid concentration, the preference of substrates and the formation of two-carbon products were changed significantly. In particular, acetic acid present in the medium as sodium acetate was consumed by L. brevis ATCC 14869 under extreme pH of both acid and alkaline conditions.
Keywords
Hydrogen ion; lactic acid; simultaneous sugar consumption; Lactobacillus brevis ATCC 14869; carbon catabolite repression;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Agrawal CM, Athanasiou KA, Heckman JD. 1997. Biodegradable PLA-PGA polymers for tissue engineering in orthopedics. Mater. Sci. Forum 250: 115-128.   DOI
2 Anderson JM, Shive MS. 1997. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev. 28: 5-24.   DOI
3 Chaillou S, Bor Y-C, Batt CA, Postma PW, Pouwels PH. 1998. Molecular cloning and functional expression in Lactobacillus plantarum 80 of xylT, encoding the D-xylose-H+ symporter of Lactobacillus brevis. Appl. Environ. Microbiol. 64: 4720-4728.
4 Costello DJ, Greenfield PF, Lee PL. 1991. Dynamic modeling of a single-stage high-rate anaerobic reactor. 1. Model derivation. Water Res. 25: 847-858.   DOI
5 Dashper SG, Reynolds EC. 1996. Lactic acid excretion by Streptococcus mutans. Microbiology Uk 142: 33-39.   DOI
6 Datta R, Tsai SP, Bonsignore P, Moon SH, Frank JR. 1995. Technological and economic potential of poly(lactic acid) and lactic acid derivatives. FEMS Microbiol. Rev. 16: 221-231.   DOI
7 Djordjevic GM, Tchieu JH, Saier MH. 2001. Genes involved in control of galactose uptake in Lactobacillus brevis and reconstitution of the regulatory system in Bacillus subtilis. J. Bacteriol. 183: 3224-3236.   DOI
8 Elziney MG, Demeyer H, Debevere JM. 1995. Kinetics of interactions of lactic acid, pH and atmosphere on the growth and survival of Yersinia enterocolitica Ip383 O9 at 4 degrees Celius. Int. J. Food Microbiol. 27: 229-244.   DOI
9 Garciaochoa F, Santos VE. 1994. Kinetic modeling of microbial systems. 2. Structured and segregated models. An. Quim. 90: 18-32.
10 Garlotta D. 2001. A literature review of poly (lactic acid). J. Polym. Environ. 9: 63-84.   DOI
11 Gatje G, Muller V, Gottschalk G. 1991. Lactic acid excretion via carrier-mediated facilitated diffusion in Lactobacillus helveticus. Appl. Microbiol. Biotechnol. 34: 778-782.
12 Guerzoni ME, Sinigaglia M, Gardini F, Ferruzzi M, Torriani S. 1995. Effects of pH, temperature, ethanol, and malate concentration on Lactobacillus plantarum and Leuconostoc oenos - modeling of the malolactic activity. Am. J. Enol. Viticult. 46: 368-374.
13 Hsiao CP, Siebert KJ. 1999. Modeling the inhibitory effects of organic acids on bacteria. Int. J. Food Microbiol. 47: 189-201.   DOI
14 Hutkins RW, Nannen NL. 1993. pH homeostasis in lactic acid bacteria. J. Dairy Sci. 76: 2354-2365.   DOI
15 Kim JH, Block DE, Shoemaker SP, Mills DA. 2010. Conversion of rice straw to bio-based chemicals: an integrated process using Lactobacillus brevis. Appl. Microbiol. Biotechnol. 86: 1375-1385.   DOI
16 Jacobsen S, Degee PH, Fritz HG, Dubois PH, Jerome R. 1999. Polylactide (PLA) - a new way of production. Polym. Eng. Sci. 39: 1311-1319.   DOI
17 Kim J-H, Shoemaker SP, Mills DA. 2009. Relaxed control of sugar utilization in Lactobacillus brevis. Microbiology 155: 1351-1359.   DOI
18 Kim JH, Block DE, Mills DA. 2010. Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Appl. Microbiol. Biotechnol. 88: 1077-1085.   DOI
19 Kim JH, Shoemaker SP, Mills DA. 2009. Relaxed control of sugar utilization in Lactobacillus brevis. Microbiology 155: 1351-1359.   DOI
20 Le Marc Y, Huchet V, Bourgeois CM, Guyonnet JP, Mafart P, Thuault D. 2002. Modelling the growth kinetics of Listeria as a function of temperature, pH and organic acid concentration. Int. J. Food Microbiol. 73: 219-237.   DOI
21 Lin JQ, Lee SM, Ko YM. 2004. Modeling and simulation of lactic acid fermentation with inhibition effects of lactic acid and glucose. Biotechnol. Bioproc. Eng. 9: 52-58.   DOI
22 Marquis RE, Bender GR, Murray DR, Wong A. 1987. Arginine deiminase system and bacterial adaptation to acid environments. Appl. Environ. Microbiol. 53: 198-200.
23 Nakakita Y, Takahashi T, Tsuchiya Y, Watari J, Shinotsuka K. 2002. A strategy for detection of all beer-spoilage bacteria. J. Am. Soc. Brew. Chem. 60: 63-67.
24 Nielsen J, Nikolajsen K, Villadsen J. 1991. Structured modeling of a microbial system. 2. Experimental verification of a structured lactic acid fermentation model. Biotechnol. Bioeng. 38: 11-23.   DOI
25 Neureiter M, Danner H, Madzingaidzo L, Miyafuji H, Thornasser C, Bvochora J, et al. 2004. Lignocellulose feedstocks for the production of lactic acid. Chem. Biochem. Eng. Q. 18: 55-63.
26 Nicolai BM, Vanimpe JF, Verlinden B, Martens T, Vandewalle J, Debaerdemaeker J. 1993. Predictive modeling of surface growth of lactic acid bacteria in vacuum packed meat. Food Microbiol. 10: 229-238.   DOI
27 Nielsen J, Nikolajsen K, Villadsen J. 1991. Structured modeling of a microbial system. 1. A theoretical study of lactic acid fermentation. Biotechnol. Bioeng. 38: 1-10.   DOI
28 Nomura M, Nakajima I, Fujita Y, Kobayashi M, Kimoto H, Suzuki I, Aso H. 1999. Lactococcus lactis contains only one glutamate decarboxylase gene. Microbiology Uk 145: 1375-1380.   DOI
29 Presser KA, Ratkowsky DA, Ross T. 1997. Modelling the growth rate of Escherichia coli as a function of pH and lactic acid concentration. Appl. Environ. Microbiol. 63: 2355-2360.
30 Presser KA, Ross T, Ratkowsky DA. 1998. Modelling the growth limits (growth/no growth interface) of Escherichia coli as a function of temperature, pH, lactic acid concentration, and water activity. Appl. Environ. Microbiol. 64: 1773-1779.
31 Stratton JE, Hutkins RW, Taylor SL. 1991. Biogenic amines in cheese and other fermented foods - a review. J. Food Protect. 54: 460-470.   DOI
32 Titgemeyer F, Hillen W. 2002. Global control of sugar metabolism: a gram-positive solution. Antonie Van Leeuwenhoek 82: 59-71.   DOI
33 Ye JJ, Reizer J, Cui X, Saier MH. 1994. ATP-dependent phosphorylation of serine-46 in the phosphocarrier protein HPr regulates lactose/H+ symport in Lactobacillus brevis. Ppoc. Natl. Acad. Sci. USA 91: 3102-3106.   DOI
34 Vereecken KM, Van Impe JF. 2002. Analysis and practical implementation of a model for combined growth and metabolite production of lactic acid bacteria. Int. J. Food Microbiol. 73: 239-250.   DOI
35 Ye JJ, Neal JW, Cui X, Reizer J, Saier MH. 1994. Regulation of the glucose:H+ symporter by metabolite-activated ATP-dependent phosphorylation of HPr in Lactobacillus brevis. J. Bacteriol. 176: 3484-3492.   DOI