• Title/Summary/Keyword: Hybrid layer thickness

Search Result 110, Processing Time 0.03 seconds

Effect of Fiber Volume Fraction on the Stress Intensity Factors for Multi Layered Composites Under Arbitrary Anti-Plane Shear Loading

  • Kim, Sung-Ho;Lee, Kang-Yong;Joo, Sung-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.9
    • /
    • pp.920-927
    • /
    • 2000
  • A multi-layered orthotropic material with a center crack is subjected to an anti-plane shear loading. The problem is formulated as a mixed boundary value problem by using the Fourier integral transform method. This gives a Fredholm integral equation of the second kind. The integral equation is solved numerically and anti-plane shear stress intensity factors are analyzed in terms of the material orthotropy for each layer, number of layers, crack length to layer thickness and the order of the loading polynomial. Also, the case of monolithic and hybrid composites are investigated in terms of the local fiber volume fraction and the global fiber volume fraction.

  • PDF

Organic-Inorganic Nanohybrid Structure for Flexible Nonvolatile Memory Thin-Film Transistor

  • Yun, Gwan-Hyeok;Kalode, Pranav;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.118-118
    • /
    • 2011
  • The Nano-Floating Gate Memory(NFGM) devices with ZnO:Cu thin film embedded in Al2O3 and AlOx-SAOL were fabricated and the electrical characteristics were evaluated. To further improve the scaling and to increase the program/erase speed, the high-k dielectric with a large barrier height such as Al2O3 can also act alternatively as a blocking layer for high-speed flash memory device application. The Al2O3 layer and AlOx-SAOL were deposited by MLD system and ZnO:Cu films were deposited by ALD system. The tunneling layer which is consisted of AlOx-SAOL were sequentially deposited at $100^{\circ}C$. The floating gate is consisted of ZnO films, which are doped with copper. The floating gate of ZnO:Cu films was used for charge trap. The same as tunneling layer, floating gate were sequentially deposited at $100^{\circ}C$. By using ALD process, we could control the proportion of Cu doping in charge trap layer and observe the memory characteristic of Cu doping ratio. Also, we could control and observe the memory property which is followed by tunneling layer thickness. The thickness of ZnO:Cu films was measured by Transmission Electron Microscopy. XPS analysis was performed to determine the composition of the ZnO:Cu film deposited by ALD process. A significant threshold voltage shift of fabricated floating gate memory devices was obtained due to the charging effects of ZnO:Cu films and the memory windows was about 13V. The feasibility of ZnO:Cu films deposited between Al2O3 and AlOx-SAOL for NFGM device application was also showed. We applied our ZnO:Cu memory to thin film transistor and evaluate the electrical property. The structure of our memory thin film transistor is consisted of all organic-inorganic hybrid structure. Then, we expect that our film could be applied to high-performance flexible device.----못찾겠음......

  • PDF

A Study on the Fabrication of the Lateral Accelerometer using SOG(Silicon On Glass) Process (SOG(Silicon On Glass)공정을 이용한 수평형 미소가속도계의 제작에 관한 연구)

  • Choi, Bum-Kyoo;Chang, Tae-Ha;Lee, Chang-Kil;Jung, Kyu-Dong;Kim, Jong-Pal
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.430-435
    • /
    • 2004
  • The resolution of the accelerometer, fabricated with MEMS technology is mainly affected by mechanical and electrical noise. To reduce mechanical noise, we have to increase mass of the structure part and quality factor related with the degree of vacuum packaging. On the other hand, to increase mass of the structure part, the thickness of the structure must be increased and ICP-RIE is used to fabricate the high aspect ratio structure. At this time, footing effect make the sensitivity of the accelerometer decreasing. This paper presents a hybrid SOG(Silicon On Glass) Process to fabricate a lateral silicon accelerometer with differential capacitance sensing scheme which has been designed and simulated. Using hybrid SOG Process, we could make it a real to increase the structural thickness and to prevent the footing effect by deposition of metal layer at the bottom of the structure. Moreover, we bonded glass wafer to structure wafer anodically, so we could realize the vacuum packaging at wafer level. Through this way, we could have an idea of controlling of quality factor.

Electrical Characteristics of Magnetic Tunnel Junctions with Different Cu-Phthalocyanine Barrier Thicknesses (Cu-Phthalocyanine 유기장벽 두께에 따른 스핀소자의 전기적 특성 변화 양상)

  • Bae, Yu-Jeong;Lee, Nyun-Jong;Kim, Tae-Hee
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.5
    • /
    • pp.162-166
    • /
    • 2012
  • V-I characteristics of Fe(100)/MgO(100)/Cu-phthalocyanine (CuPc)/Co hybrid magnetic tunnel junctions were investigated at different temperatures. Fe(100) and Co ferromagnetic layers were separated by an organic-inorganic hybrid barrier consisting of different thickness of CuPc thin film grown on a 2 nm thick epitaxial MgO(100) layer. As the CuPc thickness increases from 0 to 10 nm, a bistable switching behavior due to strong charging effects was observed, while a very large magenetoresistance was shown at 77 K for the junctions without the CuPc barrier. This switching behavior decreases with the increase in temperature, and finally disappears beyond 240 K. In this work, high-potential future applications of the MgO(100)/CuPc bilayer were discussed for hybrid spintronic devices as well as polymer random access memories (PoRAMs).

Effect of Precursor Ratio on the Properties of Inorganic-Organic Hybrid TiO2-SiO2 Coating (유무기 TiO2-SiO2 혼성코팅에 미치는 전구체 배합비율의 영향)

  • Kim, Dong Kyu;Maeng, Wan Young
    • Korean Journal of Materials Research
    • /
    • v.26 no.5
    • /
    • pp.271-280
    • /
    • 2016
  • When a single inorganic precursor is used for the synthesis of a sol-gel coating, there is a problem of cracking on the surface of coating layer. In order to solve this problem of surface cracking, we synthesized inorganic-organic coatings that have hybrid properties of inorganic and organic materials. Sols of various ratios (1:0.07, 0.2, 0.41, 0.82, 1.64, 3.26, 6.54, 13.2) of an inorganic precursor of Tetrabutylorthotitanate ($Ti(OBu)_4$, TBOT) and an organic precursor of ${\gamma}$-Methacryloxy propyltrimethoxysilane (MAPTS) were prepared and coated on stainless steels (SUS316L) by dip coating method. The binding structure and the physical properties of the synthesized coatings were analyzed by FT-IR, FE-SEM, FIB (Focused Ion Beam), and a nano-indenter. Dynamic polarization testing and EIS (electrical impedance spectroscopy) were carried out to evaluate the micro-defects and the corrosion properties of the coatings. The prepared coatings show hybrid properties of inorganic oxides and organic materials. Crack free coatings were prepared when the MAPTS ratio was above a critical value. As the MAPTS ratio increased, the thickness and the corrosion resistance increased, and the hardness decreased.

Hybrid Insulator Organic Thin Film Transistors With Improved Mobility Characteristics

  • Park, Chang-Bum;Jin, Sung-Hun;Park, Byung-Gook;Lee, Jong-Duk
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1291-1293
    • /
    • 2005
  • Hybrid insulator pentacene thin film transistors (TFTs) were fabricated with thermally grown oxide and cross-linked polyvinylalcohol (PVA) including surface treatment by dilute ploymethylmethacrylate (PMMA) layers on $n^+$ doped silicon wafer. Through the optimization of $SiO_2$ layer thickness in hybrid insulator structure, carrier mobility was increased to above 35 times than that of the TFT only with the gate insulator of $SiO_2$ at the same transverse electric field. The carrier mobility of 1.80 $cm^2$/V-s, subthreshold swing of 1.81 V/decade, and $I_{on}$/ $I_{off}$ current ratio > 1.10 × $10^5$ were obtained at low bias (less than -30 V) condition. The result is one of the best reported performances of pentacne TFTs with hybrid insulator including cross-linked PVA material at low voltage operation.

  • PDF

Effects of Heterostructure Electrodes on the Reliability of Ferroelectric PZT Thin Films

  • Kim, Seung-Hyun;Woo, Hyun-Jung;Koo, Chang-Young;Yang, Jeong-Seung;Ha, Su-Min;Park, Dong-Yeon;Lee, Dong-Su;Ha, Jo-Woong
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.4
    • /
    • pp.341-345
    • /
    • 2002
  • The effect of the Pt electrode and the $Pt-IrO_2$ hybrid electrode on the performance of ferroelectric device was investigated. The modified Pt thin films with non-columnar structure significantly reduced the oxidation of TiN diffusion barrier layer, which rendered it possible to incorporate the simple stacked structure of Pt/TiN/poly-Si plug. When a $Pt-IrO_2$ hybrid electrode is applied, PZT thin film properties are influenced by the thickness and the partial coverage of the electrode layers. The optimized $Pt-IrO_2$ hybrid electrode significantly enhanced the fatigue properties with minimal leakage current.

Life Time Characteristics of OLED Device with AlOx Passivation Film Deposited by RF Magnetron Sputtering (RF 마그네트론 스퍼터링으로 증착된 AlOx 봉지 박막을 갖는 OLED 소자의 수명 특성)

  • An, O-Jin;Ju, Sung-Hoo;Yang, Jae-Woong
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.6
    • /
    • pp.272-277
    • /
    • 2010
  • We investigated the life time characteristics of OLED device with aluminium oxide ($AlO_x$) passivation film on glass substrate and polyethylene terephthalate (PET) substrate by RF magnetron sputtering for the transparent barrier film applied to flexible OLED device. Basic buffer layer was determined as $Alq_3$(500 nm)-LiF(300 nm)-Al(1200 nm), and the most suitable aluminium oxide ($AlO_x$) film have been formed when the partial volume ratio of oxygen was 20% and the sputtering power was 100 watt and the minimum thickness of buffer was $2\;{\mu}m$. $AlO_x$/epoxy hybrid film was also used as a effective passivation layer for the purpose of improving life time characteristics of OLED devices with the glass substrate and the plastic substrate. Besides, the simultaneous deposition of $AlO_x$/epoxy film on back side of PET could result in better improvement of life time.

Enhanced Anti-reflective Effect of SiNx/SiOx/InSnO Multi-layers using Plasma Enhanced Chemical Vapor Deposition System with Hybrid Plasma Source

  • Choi, Min-Jun;Kwon, O Dae;Choi, Sang Dae;Baek, Ju-Yeoul;An, Kyoung-Joon;Chung, Kwun-Bum
    • Applied Science and Convergence Technology
    • /
    • v.25 no.4
    • /
    • pp.73-76
    • /
    • 2016
  • Multi-layer films of $SiN_x/SiO_x$/InSnO with anti-reflective effect were grown by new-concept plasma enhanced chemical vapor deposition system (PECVD) with hybrid plasma source (HPS). Anti-reflective effect of $SiN_x/SiO_x$/InSnO was investigated as a function of ratio of $SiN_x$ and $SiO_x$ thickness. Multi-layers deposited by PECVD with HPS represents the enhancement of anti-reflective effect with high transmittance, comparing to the layers by conventional radio frequency (RF) sputtering system. This change is strongly related to the optical and physical properties of each layer, such as refractive index, composition, film density, and surface roughness depending on the deposition system.

A study on ceramic and metal composite material joining for micro filter using thermal spray and laser welding (용사법과 레이저 용접을 이용한 복합소재 미세필터 연구)

  • Song, In-Gyu;Choi, Hae-Woon;Kim, Joo-Han;Yun, Bong-Han;Park, Jung-Eon
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.32-38
    • /
    • 2010
  • Hybrid material(ceramic+metal) processes were developed for micro filter using ceramics coating at metal filter surface by thermal spray method, micro hole drilling at ceramic coated filter surface by femtosecond laser, and fiber laser direct welding of ceramic and metal (SUS304, SM45C) by capillary effect. Thermal spray process was used for ceramic powders and metal filters. The used ceramic powders were $Al_2O_3+40TiO_2$(Metco 131VF) powder of maximum particle size $5{\mu}m$ and ${Al_2O_3}99+$(Metco 54NS) power of maximum particle size 45m. Ceramic coated filters using thermal spray method had a great influence on powder material, particle size and coating thickness but had a fine performance as a micro filter. CW fiber laser was used to drill the top ceramic layer and melt the bottom metal layer for joining applications.

  • PDF