Browse > Article
http://dx.doi.org/10.3740/MRSK.2016.26.5.271

Effect of Precursor Ratio on the Properties of Inorganic-Organic Hybrid TiO2-SiO2 Coating  

Kim, Dong Kyu (Department of Engineering Chemistry, College of Engineering, Chungbuk National University)
Maeng, Wan Young (Department of Nuclear Material, Korea Atomic Energy Research)
Publication Information
Korean Journal of Materials Research / v.26, no.5, 2016 , pp. 271-280 More about this Journal
Abstract
When a single inorganic precursor is used for the synthesis of a sol-gel coating, there is a problem of cracking on the surface of coating layer. In order to solve this problem of surface cracking, we synthesized inorganic-organic coatings that have hybrid properties of inorganic and organic materials. Sols of various ratios (1:0.07, 0.2, 0.41, 0.82, 1.64, 3.26, 6.54, 13.2) of an inorganic precursor of Tetrabutylorthotitanate ($Ti(OBu)_4$, TBOT) and an organic precursor of ${\gamma}$-Methacryloxy propyltrimethoxysilane (MAPTS) were prepared and coated on stainless steels (SUS316L) by dip coating method. The binding structure and the physical properties of the synthesized coatings were analyzed by FT-IR, FE-SEM, FIB (Focused Ion Beam), and a nano-indenter. Dynamic polarization testing and EIS (electrical impedance spectroscopy) were carried out to evaluate the micro-defects and the corrosion properties of the coatings. The prepared coatings show hybrid properties of inorganic oxides and organic materials. Crack free coatings were prepared when the MAPTS ratio was above a critical value. As the MAPTS ratio increased, the thickness and the corrosion resistance increased, and the hardness decreased.
Keywords
sol-gel; inorganic-organic hybrid coatings; nanoindenter; dynamic polarization test; EIS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. H. Son, Y. Y. Lee, S. J. Kim, S. S. Hong, G. D. Lee and S. S. Park, Appl. Chem. Eng., 22, 691 (2011).
2 S. H. Jang, Polymer Sci. Tech., 12, 676 (2001).
3 D. H. Son, D. S. Kim, S. H. Lee, S. H. Kim, G. D. Lee and S. S. Park, Appl. Chem. Eng., 23, 53 (2012).
4 S. K. Oh, J. S. Chung, B. S. Lee and K. C. Song, Korean J. Chem. Eng. Res., 46, 274 (2008).
5 J. H. Han, Machine Mater., 17, 40 (2005).
6 S. H. Lee. Master's Thesis, p35-65, Kyunghee University, Seoul (2008).
7 J. Strunk, W. C. Vining, and A. T. Bell, J. Phys. Chem., 114, 16937 (2010).
8 V. A. Zeitler and C. A. Brown, J. Phys. Chem., 61, 1174 (1957).   DOI
9 A. Pirson, A. Mohsine, P. Marchot, B. Michaux, O. V. Cantfort and J. P. Pirard, J. Sol-Gel Sci. Tech., 4, 179 (1995).   DOI
10 C. F. Song, M. K. Lu, P. Yang, D. Xu and D. R. Yuan, Thin Solid Films, 413, 155 (2002).   DOI
11 Y. S. Song. Master's Thesis, p19, Hanyang University, Seoul (2003).
12 H. Yaghoubi, N. Taghavinia, E. K. Alamdari and A. A. Volinsky, ACS Appl. Mater. Interfaces, 2, 2629 (2010).   DOI
13 D. Kaczmarek, J. Domaradzki, D. Wojcieszak, E. Prociow, M. Mazur, F. Placido and S. Lapp, J. Nano Res., 18-19, 195 (2012).   DOI
14 B J Briscoe, L Fiori and E Pelillo, J. Phys. D Appl. Phys., 31, 2395 (1998).   DOI
15 J. H. W. de Wit in "Corrosion Mechanisms in Theory and Practive", P. Marcus and J. Oudar, Eds., p. 581, Marcel Dekker, New York (1995).
16 F, Mansfeld, J. Appl. Electrochem., 25, 187 (1995).
17 F. Mansfeld, Electrochim. Acta., 38, 1891 (1993).   DOI
18 Marie-Georges Olivier and Mireille Poelman(2012). "Use of Electrochemical Impedance Spectroscopy (EIS) for the Evaluation of Electrocoatings Performances", Recent Researches in Corrosion Evaluation and Protection, Prof. Reza Shoja Razavi(Ed.), ISBN:978-953-307-920-2, InTech.